Skip to main content

Marker-Assisted Selection in Sorghum

  • Chapter
Genomics-Assisted Crop Improvement

Abstract

Sorghum [Sorghum bicolor (L.) Moench] is an important food and feed crop in many parts of the world, and has potential uses in the biofuels industry. Compared to most other cereals, sorghum is more tolerant to many abiotic stresses, including heat, drought, and flooding, making it an ideal crop for growing on marginal lands as demands for food, feed, and energy increase. Though it is generally stress-tolerant, the true potential of sorghum can only be realized through concerted genetic improvement programs. The use of DNA-based markers for the genetic analysis and manipulation of important agronomic and stress-tolerance traits is becoming an increasingly useful tool in sorghum improvement. The known germplasm of sorghum is incredibly diverse, and molecular markers are being used to assess this diversity to help manage large germplasm collections, and to make these collections more useful to breeders. Molecular markers have been used in sorghum to identify quantitative trait loci (QTL) for many complex traits, including pre-flowering and post-flowering drought tolerance, early-season cold tolerance, and resistance to the parasitic weed Striga. However, progress in utilizing these QTL had been limited by the lack of a standard genetic map and a common nomenclature for the various linkage groups of sorghum. Fortunately, the genetic map of sorghum has recently become standardized, and has also been linked to physical chromosomes. The use of a common map will facilitate the exchange of marker and QTL information between sorghum research groups. This will allow independent validation of QTL and should expedite efforts to use these QTL for the development of improved sorghum cultivars through marker-assisted selection and trait introgression. Newer, faster marker technologies based on single nucleotide polymorphisms (SNPs), and mapping methods based on linkage disequilibrium (association mapping), will soon become useful tools for future efforts to improve this important crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu Assar AH, Uptmoor R, Abdelmula AA, Salih M, Ordon F, Friedt W (2005) Genetic variation in sorghum germplasm from Sudan, ICRISAT, and USA assessed by simple sequence repeats (SSRs). Crop Sci 45:1636–1644

    Article  CAS  Google Scholar 

  • Affymetrix, Inc. (2006) http://www.affymetrix.com/index.affx (Cited 12 September 2006)

    Google Scholar 

  • Agrios GN (1988) Plant pathology, Academic Press, London

    Google Scholar 

  • Arús P, Moreno-González J (1993) Marker-assisted selection. In: Hayward MD, Bosemark NO, Romagosa J (eds) Plant breeding: principles and prospects, Chapman & Hall, London, pp 314–331

    Google Scholar 

  • Bhattramakki D, Dong J, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench Genome 43:988–1002

    Google Scholar 

  • Binelli G, Gianfranceschi L, Pe ME, Taramino G, Busso C, Stenhouse J, Ottaviano E (1992) Similarity of maize and sorghum genomes as revealed by maize RFLP probes. Theor Appl Genet 84:10–16

    Article  CAS  Google Scholar 

  • Boivin K, Deu M, Rami J-F, Trouche G, Hamon P (1990) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98:320–328

    Article  Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li ZK, Lin YR, Liu SC, Luo LJ, Marler BS, Ming RG, Mitchell SE, Qiang D, Reischmann K, Schulze SR, Skinner DN, Wang YW, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    PubMed  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Chhina BS, Phul PS (1987) Association of seedling vigour with grain yield and nutritional quality in sorghum. Indian J Agric Sci 57:659–660

    Google Scholar 

  • Chittenden LM, Schertz KF, Lin Y-R, Wing RA, Paterson AH (1994) A detailed RFLP map of Sorghum bicolor × S. propinquum suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933

    Article  CAS  Google Scholar 

  • Cisse N (1995) Heritability estimates, genetic correlation, and identification of RAPD markers linked to seedling vigor and associated agronomic traits in sorghum. PhD. Thesis, Purdue University, West Lafayette, IN

    Google Scholar 

  • Cisse N, Ejeta G (2003) Genetic variation and relationships among seedling vigor traits in sorghum. Crop Sci 43:824–828

    Article  Google Scholar 

  • Collins A, Lau W, De la Vega FM (2004) Mapping genes for common diseases: the case for genetic (LD) maps. Hum Hered 58:2–9

    Article  PubMed  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea L.): isolation and properties of a potent stimulant. Science 154:1189–1190

    Article  PubMed  CAS  Google Scholar 

  • Cook CE, Whichard LP, Wall ME, Egley GH, Coggen P, McPhail AT (1972) Germination stimulants 2. The structure of strigol a potent seed germination stimulant for witchweed (Striga lutea L.). J Am Chem Soc 94:6198–6199

    Article  CAS  Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262:579–588

    Article  PubMed  CAS  Google Scholar 

  • DArT P/L (2006) Diversity arrays technology Pty. Ltd. http://www.diversityarrays.com/index.html (Cited 12 September 2006)

    Google Scholar 

  • de Oliveira AC, Richter T, Bennetzen JL (1996) Regional and racial specificities in sorghum germplasm assessed with DNA markers. Genome 39:579–587

    PubMed  Google Scholar 

  • de Wet JMJ (1978) Systematics and evolution of Sorghum Sect., Sorghum (Graminae). Am J Bot 65:477–484

    Article  Google Scholar 

  • Dean RE, Dahlberg JA, Hopkins MS, Mitchell SE, Kresovich S (1999) Genetic redundancy and diversity among ‘Orange’ accessions in the U.S. national sorghum collection as assessed with simple sequence repeat (SSR) markers. Crop Sci 39:1215–1221

    Article  Google Scholar 

  • Deu M, Gonzalez-de-Leon D, Glaszmann J-C, Degremont I, Chantereau J, Lanaud C, Hamon P (1994) RFLP diversity in cultivated sorghum in relation to racial differentiation. Theor Appl Genet 88:838–844

    Article  CAS  Google Scholar 

  • Deu M, Ratnadass A, Hamada MA, Noyer JL, Diabate M, Chantereau J (2005) Quantitative trait loci for head-bug resistance in sorghum. Afr J Biotechnol 4:247–250

    CAS  Google Scholar 

  • Dufour P, Deu M, Grivet L, D’Hont A, Paulet F, Bouet A, Lanaud C, Glaszmann JC, Hamon P (1997) Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94:409–418

    Article  CAS  Google Scholar 

  • FAO (2004) Food and Agriculture Organization of the United Nations, Statistics Division. http://www.fao.org/es/ess/index_en.asp (Cited 12 September 2006)

    Google Scholar 

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Gowda PSB, Xu GW, Frederiksen RA, Magill CW (1995) DNA markers for downy mildew resistance genes in sorghum. Genome 38:823–826

    CAS  PubMed  Google Scholar 

  • Grenier C, Bramel-Cox PJ, Noirot M, Prasada Rao KE, Hamon P (2000a) Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs. non-random sampling procedures A. Using morpho-agronomical and passport data. Theor Appl Genet 101:190–196

    Article  CAS  Google Scholar 

  • Grenier C, Deu M, Kresovich S, Bramel-Cox PJ, Hamon P (2000b) Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs. non-random sampling procedures B. Using molecular markers. Theor Appl Genet 101:197–202

    Article  CAS  Google Scholar 

  • Gunaratna N (2002) Early season cold tolerance in sorghum. MS Thesis, Purdue University, West Lafayette, IN

    Google Scholar 

  • Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176

    Article  Google Scholar 

  • Harlan JR, Stemler A (1978) The races of sorghum in Africa. In: Harlan JR et al (eds) Origins of African plant domestication, Mouton Publishers, The Hague, pp 465–478

    Google Scholar 

  • Hauck C, Muller S, Schildknecht H (1992) A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant. J Plant Physiol 139:474–478

    CAS  Google Scholar 

  • Haussmann BIG, Hess DE, Omanya GO, Reddy BVS, Weiz HG, Geiger HH (2001) Major and minor genes for stimulation of Striga hermonthica seed germination in sorghum, and interaction with different striga populations. Crop Sci 41:1507–1512

    Article  Google Scholar 

  • Haussmann BIG, Mahalakshmi V, Reddy BVS, Seetharama N, Hash CT, Geiger HH (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    PubMed  CAS  Google Scholar 

  • Haussmann BIG, Hess DE, Omanya GO, Folkertsma RT, Reddy BVS, Kayentao M, Weiz HG, Geiger HH (2004) Genomic regions influencing resistance to the parasitic weed Striga hermonthica in two recombinant inbred populations of sorghum. Theor Appl Genet 109:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87:4251–4255

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim YH (1999) A sorghum linkage map and predicted response to phenotypic and marker selection for resistance to striga in sorghum. PhD Thesis, Purdue University, West Lafayette, IN

    Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucl Acids Res 29:e25

    Article  PubMed  CAS  Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V, Evers M, Heller-Uszynska K, Uszynski G, Cayla C, Patarapuwadol S, Xia L, Yang S, Thomson B (2003) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the international congress ‘In the wake of the double helix: from the green revolution to the gene revolution’, Avenue Media, Bologna, Italy, pp 443–461

    Google Scholar 

  • Kim J-S, Childs KL, Islam-Faridi MN, Menz MA, Klein RR, Klein PE, Price HJ, Mullet JE, Stelly DM (2002) Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome 45:402–412

    Article  PubMed  CAS  Google Scholar 

  • Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Knoll JE, Ejeta G (2007) Marker-assisted selection for early-season cold tolerance in sorghum: QTL validation across populations and environments. Manuscript in preparation.

    Google Scholar 

  • Knoll JE, Gunaratna N, Ejeta G (2007) QTL analysis of early-season cold tolerance in sorghum. Manuscript in preparation.

    Google Scholar 

  • Maiti RK, Raju PS, Bidinger FR (1981) Evaluation of visual scoring for seedling vigor in sorghum. Seed Sci Technol 9:613–622

    Google Scholar 

  • Melake-Berhan A, Hulbert SH, Butler LG, Bennetzen JL (1993) Structure and evolution of the genomes of Sorghum bicolor and Zea mays. Theor Appl Genet 86:598–604

    Article  Google Scholar 

  • Menkir A, Goldsbrough P, Ejeta G (1997) RAPD based assessment of genetic diversity in cultivated races of sorghum. Crop Sci 37:564–569

    Article  CAS  Google Scholar 

  • Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol 48:483–499

    Article  PubMed  CAS  Google Scholar 

  • Mohamed A (2002) Identification and characterization of genetic variants in sorghum for specific mechanisms of Striga resistance. PhD Thesis, Purdue University, West Lafayette, IN

    Google Scholar 

  • Mohamed A, Ellicott A, Housley TL, Ejeta G (2003) Hypersensitive response to Striga infection in Sorghum. Crop Sci 43:1320–1324

    Article  Google Scholar 

  • Nagaraj N, Reese JC, Tuinstra MR, Smith CM, Amand PS, Kirkham MB, Kofoid KD, Campbell LR, Wilde GE (2005) Molecular mapping of sorghum genes expressing tolerance to damage by greenbug (Homoptera: Aphididae). J Econ Entomol 98:595–602

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Lin Y, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu S, Stanzel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Schertz KF, Cartinhour S, Hart GE (1999) Comparative genome mapping of Sorghum bicolor (L) Moench using an RFLP map constructed in a population of recombinant inbred lines. Plant Breed 118:225–235

    Article  CAS  Google Scholar 

  • Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388

    Article  CAS  Google Scholar 

  • Pereira MG, Lee M, Bramel-Cox P, Woodman W, Doebley J, Whitkus R (1994) Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37:236–243

    Article  CAS  PubMed  Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 48:713–726

    Article  PubMed  CAS  Google Scholar 

  • Siame BA, Weerasuriya Y, Wood K, Ejeta G, Butler LG (1993) Isolation of strigol, a germination stimulant for Striga asiatica from host plants. J Agric Food Chem 41:1486–1491

    Article  CAS  Google Scholar 

  • Singh SP (1985) Sources of cold tolerance in grain sorghum. Can J Plant Sci 65:251–257

    Article  Google Scholar 

  • Soller M, Beckmann JS (1983) Genetic polymorphism in varietal identification and genetic improvement. Theor Appl Genet 67:25–33

    Article  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay-green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741

    Article  CAS  Google Scholar 

  • Tanksley SD, Hewitt J (1988) Use of molecular markers in breeding for soluble solids content in tomato – a re-examination. Theor Appl Genet 75:811–823

    Article  CAS  Google Scholar 

  • Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay-green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1225–1232

    Article  CAS  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1997a) Heterogeneous inbred family (HIF) analysis: an approach for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011

    Article  CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997b) Genetic analysis of post-flowering drought tolerance and components of grain development in sorghum. Mol Breed 3:439–448

    Article  CAS  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1998) Evaluation of near-isogenic sorghum lines contrasting for QTL markers associated with drought tolerance. Crop Sci 38:835–842

    Article  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1996) Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci 36:1337–1344

    Article  CAS  Google Scholar 

  • Vogler RK, Ejeta G, Butler LG (1996) Inheritance of low production of Striga germination stimulant in sorghum. Crop Sci 36:1185–1191

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wanous MK, Miller FR, Rosenow DT (1991) Evaluation of visual rating scales for green leaf retention in sorghum. Crop Sci 31:1691–1694

    Article  Google Scholar 

  • Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130

    PubMed  CAS  Google Scholar 

  • Xu GW, Magill CW, Schertz KF, Hart GE (1994) A RFLP linkage map of Sorghum bicolor (L.) Moench. Theor Appl Genet 89:139–145

    Article  CAS  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet J, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    Article  PubMed  CAS  Google Scholar 

  • Yang W, de Oliveira AC, Godwin I, Schertz K, Bennetzen JL (1996) Comparison of DNA marker technologies in characterizing plant genome diversity: variability in Chinese sorghums. Crop Sci 36:1669–1676

    Article  Google Scholar 

  • Yousef GG, Juvik JA (2002) Enhancement of seedling emergence in sweet corn by marker-assisted backcrossing of beneficial QTL. Crop Sci 42:96–104

    Article  PubMed  Google Scholar 

  • Zeng Z (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng Z (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    Google Scholar 

  • Zhou W-C, Kolb FL, Bai G-H, Domier LL, Boze LK, Smith NJ (2003) Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breed 122:40–46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ejeta, G., Knoll, J.E. (2007). Marker-Assisted Selection in Sorghum. In: Varshney, R.K., Tuberosa, R. (eds) Genomics-Assisted Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6297-1_9

Download citation

Publish with us

Policies and ethics