Genomics For Improvement Of Rosaceae Temperate Tree Fruit

  • Pere Arús
  • Susan Gardiner

Abstract

Genomic studies of Rosaceous fruit trees have concentrated on two species: peach (Prunus persica), which has served as a model for other species of the same genus, such as the stone fruits (apricot, cherry and plum) and almond; and apple (Malus x domestica ), which itself is a model for other close species such as pear, quince and loquat. High density or saturated maps exist in both peach and apple, and sets of microsatellite markers spaced across the genome of both species are used for gene tagging and mapping in other populations. Efficient methods for mapping new markers and genes have been developed, such as “bin mapping” and the “genome scanning approach”. Tens of major genes and QTLs have been located on the maps of both species, and some of them are close to markers routinely used for selection in plant breeding. Comparative mapping has shown that all members of the Prunus genus share the same genome structure and that apple and pear genomes have a highly similar genetic organization. There are chromosomal rearrangements between the genomes of apple and Prunus, but extensive regions of synteny and collinearity are maintained. Several genes of apple and peach have been cloned using map-based techniques or are in the process of being cloned. A physical map is in an advanced stage of construction for peach and one has recently been started in apple. Large EST collections have been developed, particularly in apple and Prunus providing tens of thousands of new markers and gene sequences useful for functional analysis and map construction. Microarrays are proving to be valuable tools for identifying candidate genes for characters of interest. This information is stored in several databases with varying degrees of public access.

Keywords

Maize Recombination Boron Assimilation Fructose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan AC, Bolitho K, Espley RV, Grafton K, Hellens RP, Lin-Wang K, Karunairetnam S, Gleave AP, Laing W (2006) The MYB transcription factors of apple: a family of genes involved in controlling a wide range of plant responses. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  2. Antofie A, Lateur M, Oger R, Patocchi A, Durel CE, Van de Weg WE (2006) Creation of a new versatile database for linking molecular and phenotypic information of apple (Malus × domestica Borkh): the HiDRAS ‘AppleBreed Database’. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  3. Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arús P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825PubMedGoogle Scholar
  4. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218Google Scholar
  5. Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2005a) Synteny in the Rosaceae. Plant Breed Rev Vol. 27. In: Janick J (ed) Plant breeding reviews, vol. 27. Wiley, New York, pp 175–211Google Scholar
  6. Arús P, Howad W, Mnejja, M (2005b) Marker development and marker-assisted selection in temperate fruit trees. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the international congress. In the wake of the double helix: from the green revolution to the gene revolution. Avenue Media, Bologna, Italy, pp 309–325Google Scholar
  7. Arús P, Ballester J, Villarroel A, Howad W (2005c) Marcadores moleculares en identificación varietal y mejora del melocotonero y otras especies Prunus: aplicaciones y potenciales. Fruticultura Profesional 152:47–52Google Scholar
  8. Austin P, Norling C, Volz R, Bus V, Gardiner S (2006) Using controlled environments to accelerate flowering of Malus seedlings. 3rd international rosaceae genomics conference, 19–22 March 2006, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  9. Baldi P, Patocchi A, Zini E, Toller C, Velasco R, Komjanc M (2004) Cloning and linkage mapping of resistance gene homologues in apple. Theor Appl Genet 109:231–239PubMedGoogle Scholar
  10. Ballester J, Socias i Company R, Arús P, de Vicente MC (2001) Genetic mapping of a major gene delaying blooming time in almond. Plant Breed 120:268–270Google Scholar
  11. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363PubMedGoogle Scholar
  12. Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Nat Acad Sci USA 101:886–890PubMedGoogle Scholar
  13. Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the evergrowing gene mutation. J Hered 95:436–444PubMedGoogle Scholar
  14. Bielenberg DG, Fan S, Reighard GL, Abbott AG (2006) Sequencing and annotation of the evergrowing locus from wild type and mutant genomes reveals several candidate genes for the control of terminal bud formation in response to dormancy inducing conditions, Acta Hort 738:559–565Google Scholar
  15. Bink MCAM, Uimari P, Sillanpää MJ, Janss LLG, Jansen RC (2002) Multiple QTL mapping in related plant populations via a pedigree-analysis approach. Theor Appl Genet 104:751–762PubMedGoogle Scholar
  16. Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529PubMedGoogle Scholar
  17. Bolar JP, Norelli JL, Wong K-W, Hayes CK, Harman GE, Aldwinckle HS, Wong KW (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77Google Scholar
  18. Bolar JP, Norelli JL, Harman GE, Brown SK, Aldwinckle HS (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res 10:533–543PubMedGoogle Scholar
  19. Borejsza-Wysocka EE, Malnoy M, Meng X, Bonasera JM, Nissinen RM, Kim JF, Beer SV, Aldwinckle HS (2004) Silencing of apple proteins that interact with DspE, a pathogenicity effector from Erwinia amylovora, as a strategy to increase resistance to fire blight. Acta Hort 1:469–473Google Scholar
  20. Borejsza-Wysocka E, Malnoy M, Meng X, Bonasera JM, Beer SV, Aldwinckle HS (2006) Increasing resistance to Erwinia amylovora in apple by silencing apple DIPM genes. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  21. Borevitz JO, Liang D, Plouffe D, Chang H-S, Zhu T, Weigel D, Berry CC, Winzeler E, Chory J (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523PubMedGoogle Scholar
  22. Bouvier L, Lespinasse Y, Schuster M (2000) Karyotype analysis of a haploid plant of apple (Malus domestica). Acta Hort 538:321–324Google Scholar
  23. Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci USA 101:15255–15260PubMedGoogle Scholar
  24. Bus V, Ranatunga C, Gardiner S, Bassett H, Rikkerink E (2000) Marker assisted selection for pest and disease resistance in the New Zealand apple breeding programme. Acta Hort 538 2:541–547Google Scholar
  25. Bus V, White A, Gardiner S, Weskett R, Ranatunga C, Samy A, Cook M, Rikkerink E (2002) An update on apple scab resistance breeding in New Zealand. Acta Hort 595:43–47Google Scholar
  26. Caldwell KS, Russell J, Langridge P, Powell W, (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567PubMedGoogle Scholar
  27. Calenge F, Durel C-E (2006) Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Mol Breed 17:329–339Google Scholar
  28. Calenge F, Faure A, Drouet D, Parisi L, Brisset MN, Paulin JP, Van der Linden CG, Van de Weg WE, Schouten H, Lespinasse Y, Durel CE (2004a) Genomic organization of resistance factors against scab (Venturia inaequalis), powdery mildew (Podosphaera leucotricha) and fire blight (Erwinia amylovora) in apple. Biol Plant Microbe Interact 4:35–39Google Scholar
  29. Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg WE, Parisi L, Durel C-E (2004b) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379Google Scholar
  30. Calenge F, Drouet D, Denancé C, Van de Weg WE, Brisset M-N, Paulin J-P, Durel C-E (2005a) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–135Google Scholar
  31. Calenge F, Van der Linden CG, Van de Weg E, Schouten HJ, Van Arkel G, Denance C, Durel C-E (2005b) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110:660–668Google Scholar
  32. Celton J-M, Gardiner S, Rusholme R, Tustin S, Ambrose B (2006a) Pedigree analysis of apple rootstocks in relation to dwarfing. In: Mercer C (ed) Proceedings 13th Australasian plant breeding conference Christchurch, New Zealand, pp 645–650Google Scholar
  33. Celton J-M, Rusholme R, Tustin S, Ward S, Ambrose B, Ferguson I, Gardiner S (2006b) Genetic mapping of Dw1, a locus required for dwarfing of apple scions by ‘M.9’ rootstock. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  34. Cevik V, King GJ (2002) Resolving the aphid resistance locus Sd-1 on a BAC contig within a sub-telomeric region of Malus linkage group 7. Genome 45:939–945PubMedGoogle Scholar
  35. Chagné D, Carlisle C, Volz R, Allan A, Espley R, Hellens R, Crowhurst R, Gardiner S (2006a) Mapping genes linked to red flesh in apple. In: Mercer C (ed) Proceedings 13th Australasian plant breeding conference Christchurch, New Zealand, pp 847–851Google Scholar
  36. Chagné D, Carlisle C, Volz R, Allan A, Espley R, Hellens R, Crowhurst R, Gardiner S (2006b) SNP discovery in apple genes: application for red color. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  37. Chaparro JX, Werner DJ, O’Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815Google Scholar
  38. Cheng FS, Weeden NF, Brown SK, Aldwinckle HS, Gardiner SE, Bus VG (1998) Development of a DNA marker for Vm, a gene conferring resistance to apple scab. Genome 41:208–214Google Scholar
  39. Cheng L, Zhou R, Reidel EJ, Sharkey TD, Dandekar AM (2005) Antisense inhibition of sorbitol synthesis leads to up-regulation of starch synthesis without altering CO2 assimilation in apple leaves. Planta 220:767–776PubMedGoogle Scholar
  40. Chevalier T, de Rigal D, Mbéguié-Mbéguié D, Gauillard F, Richard-Forget F, Fils-Licaon BR (1999) Molecular cloning and characterization of apricot fruit polyphenol oxydase. Plant Physiol 119:1261–1270PubMedGoogle Scholar
  41. Chevreau E, Faize M, Dupuis F, Sourice S, Parisi L (2004) Combination of a transgene-mediated defense mechanism with a natural resistance gene increases apple scab resistance. Acta Hort 1:447–452Google Scholar
  42. Claverie M (2004) Stratégie de clonage positionnel du gène Ma conférant la résistence aux nématodes du genre Meloidogyne chez le prunier myrobolan. Ph.D. Thesis. Ecole Superieure Agronomique de Montpellier (France)Google Scholar
  43. Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls AC, Voisin R, Kleinhentz M, Lafargue B, Caboche M, Chalhoub B, Esmenjaud D (2004) High-resolution mapping and chromosome landing at the root-know nematode resistance locus Ma from Myrobalan plum using a large-insert BAC DNA library. Theor Appl Genet 109:1318–27PubMedGoogle Scholar
  44. Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786PubMedGoogle Scholar
  45. Conner PJ, Brown SK, Weeden NF (1997) Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J Am Soc Hort Sci 122:350–359Google Scholar
  46. Cook M, Gardiner S (2004) Development of a fully automated system to extract DNA from difficult plant tissues for genomics research. Plant & animal genome XII conference, San Diego, CA, http://www.intl-pag.org/12/abstracts/Google Scholar
  47. Cook MR, Xu P, Gardiner SE (2002) Development of an automated system for DNA extraction from leaf tissue. Projects 7:1–8Google Scholar
  48. Costa F, Stella S, van de Weg WE, Guerra W, Cecchinel M, Dallavia J, Koller B, Sansavini S (2005) Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica 141:181–190Google Scholar
  49. Crowhurst RN, Allan AC, Atkinson RG, Beuning LL, Davey M, Friel E, Gardiner SE, Gleave AP, Greenwood DR, Hellens RP, Janssen BJ, Kutty-Amma S, Laing WA, MacRae EA, Newcomb RD, Plummer KM, Schaffer R, Simpson RM, Snowden KC, Templeton MD, Walton EF, Rikkerink EHA (2005) The HortResearch apple EST database – a resource for apple genetics and functional genomics. Plant & animal genome XIII conference, San Diego, CA, http://www.intl-pag.org/13/abstracts/Google Scholar
  50. Crowhurst RN, Deng C, Davy M (2006) BioView – an enterprise bioinformatics system for automated analysis and annotation of non-genomic DNA sequence. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/ conferences/RG3_abstracts.pdfGoogle Scholar
  51. Dandekar AM, Teo G, Defilippi BG, Uratsu SL, Passey AJ, Kader AA, Stow JR, Colgan RJ, James DJ (2004) Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res 13:373–384Google Scholar
  52. Davey MW, Razavi F, Keulemans W (2006) Breeding functional apples; identification of QTL’s for mean vitamin C contents of fruit skin and flesh. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  53. de Souza VAB, Byrne DH (1998) Heritability, genetic and phenotypic correlations, and predicted selection response of quantitative traits in peach: II. An analysis of several fruit traits. J Am Soc Hort Sci 123:604–611Google Scholar
  54. Decroocq V, Foulongne M, Lambert P, Gall OL, Mantin C, Pascal T, Schurdi-Levraud V, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genomics 272:680–689PubMedGoogle Scholar
  55. Defilippi BG, Dandekar AM, Kader AA (2004) Impact of suppression of ethylene action or biosynthesis on flavor metabolites in apple (Malus domestica Borkh) fruits. J Agric Food Chem 52:5694–5701PubMedGoogle Scholar
  56. Defilippi BG, Dandekar AM, Kader AA (2005) Relationship of ethylene biosynthesis to volatile production, related enzymes, and precursor availability in apple peel and flesh tissues. J Agric Food Chem 53:3133–3141PubMedGoogle Scholar
  57. Degenhardt J, Al-Masri AN, Kürkcüoglu S, Szankowski I, Gau AE (2005) Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol Genet Genomics 273:326–335PubMedGoogle Scholar
  58. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445PubMedGoogle Scholar
  59. Diatchenko L, Lukyanov S, Lau Y-FC, Siebert PD (1999) Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol 303:349–380PubMedGoogle Scholar
  60. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batch). Theor Appl Genet 98:18–31Google Scholar
  61. Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004a) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896Google Scholar
  62. Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arús P, Esmenjaud D (2004b) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid – location of root-knot nematode resistance genes. Theor Appl Genet 109:827–838Google Scholar
  63. Dirlewanger E, Kleinhentz M, Laigret F, Gómez-Aparisi J, Rubio-Cabetas MJ, Claverie M, Bosselut N, Voisin R, Esmenjaud D, Xyloyannis C, Dichio B, Poëssel JL, Di Vito M, Arús P, Howad W (2005) Breeding for a new generation of Prunus rootstocks based on marker-assisted selection: A European initiative. Acta Hort 663:829–833Google Scholar
  64. Dominguez I, Graziano E, Gebhardt C, Barakat A, Berry S, Arús P, Delseny M, Barnes S (2003) Plant genome archeology: evidence for conserved ancestral chromosome segmentsin dicotyledonous plant species. Plant Biotech J 1:91–99Google Scholar
  65. Dondini L, Pierantoni L, Gaiotti F, Chiondini R, Tartarini S, Bazzi C, Sansavini S (2004) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407–418Google Scholar
  66. Dreesen R, Vanholme B, Keulemans J (2006) Transcriptomics of ripening in apple as a tool to improve apple quality traits. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  67. Dunemann F, Urbanietz A, Gardiner S, Bassett H, Legg W, Rusholme R, Bus V, Ranatunga C (2005) Marker assisted selection for Pl-1 powdery mildew resistance in apple – old markers for a new resistance gene? Acta Hort 663Google Scholar
  68. Durel CE, Parisi L, Laurens F, Van de Weg WE, Liebhard R, Jourjon MF (2003) Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome 46:224–234PubMedGoogle Scholar
  69. Durham RE, Korban SS (1994) Evidence of gene introgression in apple using RAPD markers. Euphytica 79:109–114Google Scholar
  70. Erdin N, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C, Patocchi A (2006) Mapping of the apple scab-resistance gene Vb. Genome 49:1238–1245PubMedGoogle Scholar
  71. Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2006) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J (in press)Google Scholar
  72. Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Dumas LS, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach (Prunus persica (L.) Batsch). Theor Appl Genet 105:145–159PubMedGoogle Scholar
  73. Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89:1478–1484Google Scholar
  74. Foulongne M (2002) Introduction d’une résistence polygénique à l’oïdium chez le pêcher Prunus persica à partir d’une espèce sauvage Prunus davidiana. PhD Thesis. Université de la Mediterranée-Faculté de Sciences de Marseille-LuminyGoogle Scholar
  75. Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50Google Scholar
  76. Frey JE, Frey B, Sauer C, Kellerhals M (2004) Efficient low-cost DNA extraction and multiplex fluorescent PCR method for marker-assisted selection in breeding. Plant Breed 123:554–557Google Scholar
  77. Gardiner S, Murdoch J, Meech S, Rusholme R, Bassett H, Cook M, Bus V, Rikkerink E, Gleave A, Crowhurst R, Ross G, Warrington I (2003) Candidate resistance genes from an EST database prove a rich source of markers for major genes conferring resistance to important apple pests and diseases. Acta Hort 622:141–151Google Scholar
  78. Gardiner SE, Bus V, Volz, R, Bassett, H (2006a) Marker assisted selection in apple breeding internationally. In: Mercer C (ed) Proceedings 13th Australasian Plant Breeding Conference Christchurch, New Zealand, pp. 681–686Google Scholar
  79. Gardiner SE, Bus VGM, Rusholme RL, Chagné D, Rikkerink EHA (2006b) Apple. In: Kole C (ed) Genome mapping and molecular breeding in plants, Vol. 4, Fruits and Nuts, Springer, Berlin pp.1–62Google Scholar
  80. Gasic K, Gonzales DO, Malnoy M, Thimmapuram J, Vodkin LO, Liu L, Aldwinckle HS, Carroll N, Orvis K, Goldsbrough P, Clifton S, Clifton L, Dante M, Hou S, Courtney W, Korban SS (2006) Analysis and functional annotation of an expressed sequence tag (EST) collection of apple (Malus × domestica). 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  81. Georgi LL, Wang Y, Yvergniaux D, Ormsbee T, Iñigo M, Reighard G, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach (Prunus persica (L.) Batsch). Theor Appl Genet 105:1151–1158PubMedGoogle Scholar
  82. Georgi LL, Wang Y, Reighard GL, Mao L, Wing RA, Abbott AG (2003) Comparison of peach and Arabidopsis genomic sequences: fragmentary conservation of gene neighborhoods. Genome 46:268–276PubMedGoogle Scholar
  83. Gianfranceschi L (2006) HiDRAS: an innovative multidisciplinary EU-funded research project to breed high-quality disease resistant apples. Plant & animal genomes XIV conference, 14–18 January, San Diego, CA, http://www.intl-pag.org/14/abstracts/PAG14_W132.htmlGoogle Scholar
  84. Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8:211–215PubMedGoogle Scholar
  85. Gilissen LJWJ, Bolhaar STHP, Matos CI, Rouwendal GJA, Boone MJ, Krens FA, Zuidmeer L, Van Leeuwen A, Akkerdaas J, Hoffmann-Sommergruber K, Knulst AC, Bosch D, van de Weg E, van Ree R (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369PubMedGoogle Scholar
  86. Gong W, Shen Y-P, Ma L-G, Pan Y, Du Y-L, Wang D-H, Yang J-Y, Hu L-D, Liu X-F, Dong C-X, Ma L, Chen Y-H, Yang X-Y, Gao Y, Zhu D, Tan X, Mu J-Y, Zhang D-B, Liu Y-L, Dinesh-Kumar SP, Li Y, Wang X-P, Gu H-Y, Qu L-J, Bai S-N, Lu Y-T, Li J-Y, Zhao J-D, Zuo J, Huang H, Deng XW, Zhu Y-X (2004) Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes1(w). Plant Physiol 135:773–782PubMedGoogle Scholar
  87. Goulão L, Oliveira CM (2006) Molecular identification of novel differentially expressed mRNAs up-regulated during ripening of apples. Plant Sci 72:306–318Google Scholar
  88. Granell A, Crisosto CH, Martí-Ibáñez C, Gradziel TM, Forment J, Peace C (2006) “CHILLPEACH” a functional database to understand peach chilling injury. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  89. Grimplet J, Romieu C, Audergon J-M, Marty I, Albagnac G, Lambert P, Bouchet J-P, Terrier N (2005) Transcriptomic study of apricot fruit (Prunus armeniaca) ripening among 13,006 expressed sequence tags. Physiol Plant 125:281–292Google Scholar
  90. Hadidi A, Czosnek H, Barba M (2004) DNA microarrays and their potential applications for the detection of plant viruses, viroids, and phytoplasmas. J Plant Pathol 86:97–104Google Scholar
  91. Haji T, Yaegaki H, Yamaguchi M (2005) Inheritance and expression of fruit texture melting, non-melting and stony hard in peach. Scientia Hort 105:241–248Google Scholar
  92. Han Y, Gasic K, Marron B, Beever JE, Korban SS (2006a) Development of a genome-wide physical map of apple genome. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  93. Han Y, Gasic K, Xu M, Korban SS (2006b) Characterization of an SBE1 gene encoding starch branching enzyme I in apple. Plant & animal genomes XIV conference, 14–18 January. http://www.intl-pag.org/14/abstracts/PAG14_P498.htmlGoogle Scholar
  94. Hartweck LM, Olszewski NE (2006) Rice GIBBERELLIN INSENSITIVE DWARF1 is a gibberellin receptor that illuminates and raises questions about GA signalling. Plant Cell 18:278–282PubMedGoogle Scholar
  95. Hatsuyama Y, Igarashi M, Fukasawa-Akada T, Hashimoto A, Ohta T, Sato Y, Honda S, Kishimoto N, Kikuchi S, Suzuki M (2003) Monitoring effects of a host specific toxin on gene expression in apple leaves by DNA microarray. Plant & animal genomes XI conference, 11–15 January, San Diego, CA, http://www.intl-pag.org/11/abstracts/P7a_P776_XI.htmlGoogle Scholar
  96. Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13PubMedGoogle Scholar
  97. Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) Molecular marker linkage map for apple. J Hered 85:4–11PubMedGoogle Scholar
  98. Hemmat M, Weeden NF, Brown SK (2003) Mapping and evaluation of Malus × domestica microsatellites in apple and pear. J Am Soc Hort Sci 128:515–520Google Scholar
  99. Horn R, Lecouls A-C, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva T, Yu Y, Kim HR, Jesudurai C, Sosinski B, Arús P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, Abbott AG (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110:1419–1428PubMedGoogle Scholar
  100. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309PubMedGoogle Scholar
  101. Itai A, Kotaki T, Tanabe K, Tamura F, Kawaguchi D, Fukuda M (2003) Rapid identification of 1-aminocyclopropane-1-carboxylate (ACC) synthase genotypes in cultivars of Japanese pear (Pyrus pyrifolia Nakai) using CAPS markers. Theor Appl Genet 106:1266–1272PubMedGoogle Scholar
  102. Jannoo N, Grivet L, Dookun A, D’Hont A, Glaszmann JC (1999) Linkage desequilibrium among modern sugarcane cultivars. Theor Appl Genet 99:1053–1060Google Scholar
  103. Janssen B, Schaffer R, Thodey K, Bishop R, Bajaj S, Snowden K, Crowhurst R, Bowen J, Ledger S, Davy M, Dayatilake D, Ward S, McCartney S, Wunsche J (2006) Microarray analysis of fruit development in apple. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  104. Jáuregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arús P (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102:1169–1176Google Scholar
  105. Jensen PJ, Rytter J, Detwiler EA, Travis JW, McNellis TW (2003) Rootstock effects on gene expression patterns in apple tree scions. Plant Mol Biol 53:493–511PubMedGoogle Scholar
  106. Jensen PJ, Altman N, Crassweller R, Makalowska I, Maximova S, Praul C, Travis JW, McNellis TW (2006) Apple tree functional genomics: getting to the rootstock of it. Plant & animal genomes XIV conference, 14–18 January, San Diego, CA, http://www.intl-pag.org/14/abstracts/PAG14_W135.htmlGoogle Scholar
  107. Joobeur T (1998) Construcción de un mapa de marcadores moleculares y análisis genético de caracteres agronómicos en Prunus. PhD thesis, Universtat de LleidaGoogle Scholar
  108. Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map for Prunus using an almond x peach F2 progeny. Theor Appl Genet 97:1034–1041Google Scholar
  109. Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbot A, Tomking J, Main D (2004) GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BioMed Central:1–8Google Scholar
  110. Jung S, Abbott AG, Jesudurai C, Tomkins J, Main D (2005) Frequency, type, distribution and annotation of simple sequence repeats in Rosaceae ESTs. Funct Integr Genomics 5:136–143PubMedGoogle Scholar
  111. Jung S, Main D, Staton M, Cho I, Zhebentyayeva T, Arús P, Abbott AG (2006) Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genomics 7:81PubMedGoogle Scholar
  112. Kellerhals M, Gianfranceschi L, Seglias N, Gessler C (2000) Marker-assisted selection in apple breeding. Acta Hort 521:255–265Google Scholar
  113. Kenis K, Keulemans J (2005) Genetic linkage maps of two apple cultivars (Malus × domestica Borkh) based on AFLP and microsatellite markers. Mol Breed 15:205–219Google Scholar
  114. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451PubMedGoogle Scholar
  115. King GJ, Maliepaard C, Lynn JR, Alston FH, Durel CE, Evans KM, Griffon B, Laurens F, Manganaris AG, Schrevens E, Tartarini S, Verhaegh J (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill). Theor Appl Genet 100:1074–1084Google Scholar
  116. King GJ, Lynn JR, Dover CJ, Evans KM, Seymour GB (2001) Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill). Theor Appl Genet 102:1227–1235Google Scholar
  117. Kirst M, Basten CJ, Myburg AA, Zeng Z-B, Sederoff RR (2005) Genetic architecture of transcript-level variation in differentiating xylem of a Eucalyptus hybrid. Genetics 169:2295–2303PubMedGoogle Scholar
  118. Ko K, Norelli JL, Reynoird J-P, Aldwinckle HS, Brown SK (2002) T4 lyozyme and attacin genes enhance resistance of transgenic ‘Galaxy’ apple against Erwinia amylovora. J Am Soc Hort Sci 127:515–519Google Scholar
  119. Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1, a TFL1-like gene, reduces the juveline phase in apple. J Am Soc Hort Sci 131:74–81Google Scholar
  120. Krens FA, Pelgrom KTB, Schaart JG, den Nijs APM, Rouwendal GJA (2004) Clean vector technology for marker-free transgenic fruit crops. Acta Hort 663:431–435Google Scholar
  121. Lalli DA, Decroocq V, Blenda AVS, Levraud V, Garay L, Gall OL, Damsteegt V, Reighard GL, Abbott, AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111:1504–1513PubMedGoogle Scholar
  122. Lambert P, Faurobert M, Pelpoir E, Moreau K, Poëssel JL, Audergon JM (2004) Comparative mapping of Prunus armeniaca, P. cerasifera × P. armeniaca and Prunus reference map. Acta Hort 663:91–94Google Scholar
  123. Lazzari B, Caprera A, Vecchietti A, Stella A, Milanesi L, Pozzi C (2005) ESTree db: a tool for peach functional genomics. BMC Bioinformatics 6:516Google Scholar
  124. Lebedev VG, Dolgov SV, Skryabin KG (2002) Transgenic pear clonal rootstocks resistant to herbicide “Basta”. Acta Hort 596:193–197Google Scholar
  125. Lee S-Y, Lee D-H (2005) Expression of MbR4, a TIR-NBS type of apple R gene, confers resistance to bacterial spot disease in Arabidopsis. J Plant Biol 48:220–228Google Scholar
  126. Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429PubMedGoogle Scholar
  127. Lester DR, Sherman WB, Atwell BJ (1996) Endopolygalacturonase and the melting flesh (M) locus in peach. J Am Soc Hort Sci 121:231–235Google Scholar
  128. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh). Mol Breed 10:217–241Google Scholar
  129. Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003a) Mapping quantitative physiological traits in apple (Malus × domestica Borkh). Plant Mol Biol 52:511–526Google Scholar
  130. Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003b) Creating a saturated reference map for the apple (Malus × domestica Borkh) genome. Theor Appl Genet 106:1497–1508Google Scholar
  131. Liebhard R, Koller B, Patocchi A, Kellerhals M, Pfammatter W, Jermini M, Gessler C (2003c) Mapping quantitative field resistance against apple scab in a ‘Fiesta’ × ‘Discovery’ progeny. Phytopathology 93:493–501Google Scholar
  132. Lin S (2005) Transcript profiling as a method to study fruit maturation, tree-ripening, and the role of “Tree Factor in ‘Gala’ and ‘Fuji’ apples” Faculty of the Graduate School University of Maryland, College Park, PhD ThesisGoogle Scholar
  133. Liu Q, Ingersoll J, Owens L, Salih S, Meng R, Hammerschlag F (2001) Response of transgenic Royal Gala apple (Malus × domestica Borkh.) shoots carrying a modified cecropin MB39 gene, to Erwinia amylovora. Plant Cell Rep 20:306–312Google Scholar
  134. López M, Mnejja M, Romero MA, Vargas FJ, Arús P, Batlle I (2005) Use of Sf-specific PCR for early selection of self-compatible seedlings in almond breeding. Options Méditerranéenes 63:269–274Google Scholar
  135. Luby JJ, Shaw DV (2001) Does marker-assisted selecton make dollars and sense in a fruit breeding program? Hort Sci 36:872–879Google Scholar
  136. MacDiarmid R (2005) RNA silencing in productive virus infections. Ann Rev of Phytopath 43:523–544Google Scholar
  137. MacHardy WE (1996) Apple scab: biology, epidemiology, and management. APS Press, St Paul MNGoogle Scholar
  138. Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73Google Scholar
  139. Malnoy MA, Aldwinckle HS (2006) Development of fire blight resistance by recombinant DNA technology. In: Janick J (ed) Plant Breeding Reviews 29, Wiley, New York, USA, pp. 315–358Google Scholar
  140. Malnoy M, Venisse JS, Brisset MN, Chevreau E (2003) Expression of bovin lactoferrin cDNA confers resistance to Erwinia amylovora in transgenic pear in through iron chelation. Mol Breed 12:231–244Google Scholar
  141. Malnoy M, Boresjza-Wysocka EE, Jin Q-L, He SY, Aldwinckle HS (2004) Over-expression of the apple gene MpNPR1 causes increased disease resistance in Malus × domestica. Acta Hort 663:463–467Google Scholar
  142. Malnoy M, Boresjza-Wysocka E, Aldwinckle HS, Jin Q-L, He SY (2006a) Transgenic apple lines over-expressing the apple gene MpNPR1 have increased resistance to fire blight. Acta Hort 704:521–526Google Scholar
  143. Malnoy M, Xu M, Borejsza-Wysocka EE, Korban SS, Aldwinckle HS (2006b) The role of Vfa RGA’s at the Vf locus in resistance to Venturia inaequalis. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  144. Malnoy M, Reynoird JP, Borejsza-Wysocka EE, Aldwinckle HS (2006c) Activation of the pathogen-inducible Gst1 promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus × domestica). Transgenic Res 15:83–93Google Scholar
  145. Malnoy M, Boresjza-Wysocka EE, Abbott P, Lewis S, Norelli JL, Flaishman M, Gidoni D, Aldwinckle HS (2006d) Genetic transformation of apple without use of a selectable marker. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/ gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  146. Manganaris AG, Alston FH, Weeden NF, Aldwinckle HS, Gustafson HL, Brown SK (1994) Isozyme locus Pgm-1 is tightly linked to a gene (Vf) for scab resistance in apple. J Am Soc Hort Sci 119:1286–1288Google Scholar
  147. Markwick NP, Docherty LC, Phung MM, Lester MT, Murray C, Yao JL, Mitra DS, Cohen D, Beuning LL, Kutty-Amma S, Christeller JT (2003) Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and lightbrown apple moth, respectively. Transgenic Res 12:671–681PubMedGoogle Scholar
  148. Mattison H, Nybom H (2005) Application of DNA markers for detection of scab resistant apple cultivars and selections. Int J Hort Sci 11:59–61Google Scholar
  149. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442PubMedGoogle Scholar
  150. Meisel L, Vizoso P, Latorre M, Saba J, Loira N, Tittarelli A, Martírnez V, Vargas C, Maldonado J, Caroca R, Bugueño M, Segovia S, Morales A, Silva H (2006) Bioinformatic advances of the Chilean nectarine functional genomics consortium. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  151. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200PubMedGoogle Scholar
  152. Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Bhawana N, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166PubMedGoogle Scholar
  153. Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193PubMedGoogle Scholar
  154. Norelli JL, Aldwinckle HS, Destéfano-Beltrán L, Jaynes JM (1994) Transgenic ‘Malling 26’ apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77:123–128Google Scholar
  155. Norelli JL, Korban SS, Volk GM, Zeng Z-B, Aldwinckle HS, Bassett CL, Beever J, Farrell RE, Gasic K Jr, Han Y, Kertbundit S, Marron B, Richards CM (2006) USDA-CSREES-NRI projects developing genomic resources for the Rosaceae (Malus). Plant & animal genome XIV conference. http://www.intl-pag.org/14/abstracts/PAG14_W133.htmlGoogle Scholar
  156. Orellana A, Baeza R, Cambiazo V, Campos R, Defilippi B, González M, Meisel L, Retamales J, Silva H (2006) The Chilean peach functional genomics initiative, a progress report. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/ gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  157. Park S, Sugimoto N, Larson MD, Beaudry R, van Nocker S (2006) Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags1. Plant Physiol 141:811–824PubMedGoogle Scholar
  158. Patocchi A, Gianfranceschi L, Gessler C (1999a) Towards the map-based cloning of Vf: fine and physical mapping of the Vf Region. Theor Appl Genet 99:1012–1017Google Scholar
  159. Patocchi A, Vinatzer BA, Gianfranceschi L, Tartarini S, Zhang HB, Sansavini S, Gessler C (1999b) Construction of a 550 kb BAC contig spanning the genomic region containing the apple scab resistance gene Vf. Mol Gen Genet 262:884–891Google Scholar
  160. Patocchi A, Bigler B, Koller B, Kellerhals M, Gessler C (2004) Vr2: a new apple scab resistance gene. Theoretical and Applied Genetics 109:1087–1092PubMedGoogle Scholar
  161. Patocchi A, Walser M, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated to the apple scab resistance gene Vm. Genome 48:630–636PubMedGoogle Scholar
  162. Peace CP, Crisosto CH, Gradziel TM (2005) Endopolygalacturonase: a candidate gene for Freestone and Melting flesh in peach. Mol Breed 161:21–31Google Scholar
  163. Peace CP, Ogundiwin EA, Gradziel TM, Potter D, Weeks C, Badenes ML, Iezzoni, AF Bliss, FA, Crisosto, CH (2006a) Fruit softening in Prunus: progress and prospects of the candidate gene approach. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  164. Peace CP, Abbott AG, Dai W, Iezzoni AF, Arus P, Baird WV, Callahan AM, Crisosto CH, Gradziel TM, Loescher W, Main D, Reighard G, Sosinski B, Tomkins J, van der Knaap E, Walla JA, Wang D (2006b) Prunus projects of the USDA CSREES national research initiative: synergies and progress. Plant & animal genome XIV conference, 14–18 January, San Diego, CAGoogle Scholar
  165. Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect. Transgenic Res 14:15–26PubMedGoogle Scholar
  166. Pierantoni L, Cho K-H, Shin I-S, Chiodini R, Tartarini S, Dondini L, Kang S-J, Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109:1519–1524PubMedGoogle Scholar
  167. Pradhan AK, Gupta V, Mukhopadhyay A, Arumugam A, Sodhi YS, Pental D (2003) A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor Appl Genet 106:607–614PubMedGoogle Scholar
  168. Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897PubMedGoogle Scholar
  169. Quilot B, Kervella J, Génard M, Lescourret F (2005) Analysisng the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach. J Exp Bot 56:3083–3092PubMedGoogle Scholar
  170. Rafalski A, Morgante M (2004) Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet 20:103–111PubMedGoogle Scholar
  171. Rikkerink E, Hilario E, Rusholme R, Gardiner S, Bus V, Gleave A, Crowhurst R (2003) Mining the HortResearch apple EST database – in silico tissue expression analysis of resistance gene candidates and resistance gene classes. http://www.intl-pag.org/11/abstracts/P01_P14_XI.htmlGoogle Scholar
  172. Rousseau M, Saint Oyant LH, Foucher F, Barrot L, Lalanne D, Sargent D, Simpson D, Laigret F, Denoyes-Rothan B (2006) 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  173. Salesses G, Mouras A (1977) Tentative d’utilisation des protoplastes pour l‘étude des chromosomes chez les Prunus. Ann Amelior Plantes 27:363–368Google Scholar
  174. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302PubMedGoogle Scholar
  175. Schaffer R, Friel E, Souleyre E, Janssen B, Thodey K, Bishop R, Davy M, Yao J-L, Cohen D, Newcomb R (2006) Microarray analysis of ripening in apple (cultivar Royal Gala). 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  176. Schneider B, Berwarth C, Jelkmann W (2006) Engineering improved resistance against the fire blight pathogen in apple cultivars ‘Elstar’ and ‘Royal Gala’ by expression of human lactoferrin. Acta Hort 704:541–544Google Scholar
  177. Schouten HJ, Krens FA, Jacobsen E (2006) Do cisgenic plants warrant less stringent oversight? Nat Biotechnol 24:753Google Scholar
  178. Scorza R, Sherman WB (1996) Peaches. In: Janick J, Moore JN (eds) Fruit breeding, Wiley, New York, pp. 325–440Google Scholar
  179. Scorza R, Mehlenbacher SA, Lightner GW (1985) Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvement. J Am Soc Hort Sci 110:547–552Google Scholar
  180. Silfverberg-Dilworth E, Patocchi A, Belfanti E, Tartarini S, Sansavini S, Gessler C (2005) HcrVf2 introduced into Gala confers race-specific scab resistance. Plant and animal genome XIII conference, January, San Diego, CA, http://www.intl-pag.org/13/abstracts/Google Scholar
  181. Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224Google Scholar
  182. Silva C, Garcia-Mas J, Sánchez AM, Arús P, Oliveira MM (2005) Looking into flowering time in almond (Prunus dulcis (Mill) DA Webb): the candidate gene approach. Theor Appl Genet 110:959–968PubMedGoogle Scholar
  183. Soglio V, Schouten H, Costa F, Gianfranceschi L (2006) Identification of genes with modulated expression during fruit development in Malus × domestica Borkh. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  184. Sonneveld T, Robbins TP, Tobutt KR (2006) Improved discrimination of self-incompatibility S-RNase alleles in cherry and high throughput genotyping by automated sizing of first intron polymerase chain reaction products. Plant Breed 125:305–307Google Scholar
  185. Soriano JM, Vilanova S, Romero C, Llácer G, Badenes ML (2005) Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L). Theor Appl Genet 110:980–989PubMedGoogle Scholar
  186. Souleyre EJF, Greenwood DR, Friel EN, Karunairetnam S, Newcomb RD (2005) An alcohol acyl transferase from apple (cv Royal Gala), MpAAT1, produces esters involved in apple fruit flavor. FEBS J 272:3132–3144PubMedGoogle Scholar
  187. Tatsuki M, Haji T, Yamaguchi M (2006) The involvement of 1-aminocyclopropane-1-carboxylic acid syntase isogene, Pp-ACS1, in peach fruit softening. J Exp Bot 57:1281–1289PubMedGoogle Scholar
  188. Terakami S, Shoda M, Adachi Y, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, Yamamoto T (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113:743–752PubMedGoogle Scholar
  189. Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, Tonutti P (2006) The use of microarray microPEACH1.0 to investigate transcriptome changes during transition from pre-climacteric toclimacteric phase in peach fruit. Plant Sci 170:606–613Google Scholar
  190. Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-Box gene with haplotype-specific polymorphism. Plant Cell 15:771–781PubMedGoogle Scholar
  191. van de Weg WE, Voorrips RE, Finkers R, Kodde LP, Jansen J, Bink MCAM (2004) Pedigree genotyping: a new pedigree-based approach of QTL identification and allele mining. Acta Hort 663:45–50Google Scholar
  192. van Nocker S, Sun L, Bukovac MJ, Fernandez-Lopez H (2006) Development of a genetic and molecular toolbox for the study of fruit abscission. Plant & animal genome conference, 14–18 January, San Diego, CAGoogle Scholar
  193. van Wordragen M, Balk P, Hall R, Nijenhuis M, van den Broeck H, Vorst O, Poelman A (2003) Applied genomics – an innovative tool to improve quality in chains: predicting mealiness in apples – a case study. Acta Hort 604:387–394Google Scholar
  194. Verde I, Lauria M, Dettori MT, Vendramin E, Balconi C, Micali S, Wang Y, Marrazzo MT, Cipriani G, Hartings H, Testolin R, Abbott AG, Motto M, Quarta R (2005) Microsatellite and AFLP markers in the [Prunus persica (L.) Batsch] × P. ferganensis BC1 linkage map: saturation and coverage improvement. Theor Appl Genet 111:1013–1021PubMedGoogle Scholar
  195. Vilanova S, Romero C, Abbott AG, Llacer G, Badenes ML (2003) An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SRR and AFLP markers, mapping plum pox virus resistance and self-incompatibility. Theor Appl Genet 107:239–247PubMedGoogle Scholar
  196. Vilanova S, Romero C, Llacer G, Badenes ML, Burgos L (2005) Identification of self-(in)compatibility alleles in apricot by PCR and sequence analysis. J Am Soc Hort Sci 130:893–898Google Scholar
  197. Vinatzer BA, Zhang HB, Sansavini S (1998) Construction and characterization of a bacterial artificial chromosome library of apple. Theor Appl Genet 97:1183–1190Google Scholar
  198. Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001a) Apple contrains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Interact 14:508–515Google Scholar
  199. Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang H-B, Gessler C, Sansavini S (2001b) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Interact 14:508–515Google Scholar
  200. Viruel MA, Madur D, Dirlewanger E, Pascal T, Kervela J (1998) Mapping quantitative trait loci controlling peach leaf curl resistance. Acta Hort 465:79–87Google Scholar
  201. Vision TJ, Brown DG, Shmoys DB, Durrett RT, Tanksley SD (2000) Selective mapping: a strategy for optimizing the construction of high-density linkage maps. Genetics 155:407–420PubMedGoogle Scholar
  202. Wang Q, Zhang K, Qu X, Jia J, Shi J, Jin D, Wang B (2001) Construction and characterization of a bacterial artificial chromosome library of peach. Theor Appl Genet 103:1174–1179Google Scholar
  203. Wang Y, Georgi LL, Reighard GL, Scorza R, Abbott AG (2002) Genetic mapping of the evergrowing gene in peach (Prunus persica (L.) Batsch). J Hered 93:352–358PubMedGoogle Scholar
  204. Wang C, Tian Y, Zhao J (2005) General application analysis of SSRs derived from apple (Malus pumila) on other species in Rosaceae. Acta Hort Sin 32:500–502Google Scholar
  205. Wattebled F, Chevreau E, Durel CE, Laurens F (2006) Improving the knowledge of apple quality by functional genomics approaches. Perspectives at INRA Angers. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  206. Welander M, Zhu LH, Li XY (2004) Transformation of dwarfing apple and pear rootstocks with the rolB gene and its influence on rooting and growth. Acta Hort 1:437–442Google Scholar
  207. Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590PubMedGoogle Scholar
  208. West MAL, van Leeuwen H, Kozik A, Kliebenstein DJ, Doerge RW, Clair DA St, Michelmore RW (2006) High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Res 16:787–795PubMedGoogle Scholar
  209. Xu M, Korban SS (2002) A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 162:1995–2006PubMedGoogle Scholar
  210. Xu M, Song J, Cheng Z, Jiang J, Korban SS (2001) A bacterial artificial chromosome (BAC) library of Malus floribunda 821 and contig construction for positional cloning of the apple scab resistance gene Vf. Genome 44:1104–1113PubMedGoogle Scholar
  211. Xu M, Korban SS, Song J, Jiang J (2002) Constructing a bacterial artificial chromosome library of the apple cultivar goldrush. Acta Hort 595:103–112Google Scholar
  212. Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18PubMedGoogle Scholar
  213. Yamamoto T, Kimura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, van de Weg WE, Hayashi T (2004) Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. Acta Hort 663:51–56Google Scholar
  214. Yamamoto Y, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J Jpn Soc Hort Sci 74:204–213Google Scholar
  215. Yamamoto T, Terakami S, Nishitani C, Kimura T, Sawamura Y, Hirabayashi T, Hayashi T (2006) Genome mapping in pear. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  216. Zhebentyayeva T, Georgi L, Forrest S, Swire-Clark G, Mook J, Horn R, Jung S, Main D, Baird WV, Reighard G, Tomkins J, Abbott AG (2006) The peach physical/genetic map database: a tool for Rosaceae genomics. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdfGoogle Scholar
  217. Zhu L, Ahlman A, Li X, Welander M (2001a) Integration of the rolA gene into the genome of the vigorous apple rootstock A2 reduced plant height and shortened internodes. J Hort Sci Biotechnol 76:758–763Google Scholar
  218. Zhu L-H, Holefors A, Ahlman A, Xue Z-T, Welander M (2001b) Transformation of the apple rootstock M.9/29 with the rolB gene and its influence on rooting and growth. Plant Sci 160:433–439Google Scholar
  219. Zhu L-H, Li X-Y, Ahlman A, Welander M (2003) The rooting ability of the dwarfing pear rootstock BP10030 (Pyrus communis) was significantly increased by introduction of the rolB gene. Plant Sci 165:829–835Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Pere Arús
    • 1
  • Susan Gardiner
    • 2
  1. 1.IRTA (Institut de Recerca i Tecnologia Agroalimentàries)Spain
  2. 2.HortResearchPrivate Bag 11030New Zealand

Personalised recommendations