Skip to main content

A proposed classification of environmental adaptation: the example of high altitude

  • Review Paper
  • Chapter
  • First Online:
Life in Extreme Environments
  • 2288 Accesses

Abstract

Extreme environments are defined as the opposite of usual environments where the evoked physiological responses are unperceivable, repeatable and adjusted to the constraint. Adaptation strategies to a given environment show three levels: cultural or technological, where a buffer space is built to protect the organism from the hostile milieu, physiological, where temporary adaptive mechanisms are developed, and genetic, where full adaptation is possible with normal life and reproduction. The cost of adaptation increases from the genetic level (minimal cost) to the technological level. These concepts are illustrated by the example of adaptation to altitude hypoxia. The technological level is given by the use of oxygen bottles by high altitude climbers. The physiological level involves various physiological and biological systems (increase in heart rate, ventilation, erythropoiesis, expression of hypoxia-inducible factors, etc.). The genetic level has been reached by some animal species such as Yaks, Llamas, Pikas but has not yet been demonstrated in humans. Diseases developed during exposure to acute or chronic hypoxia may be considered as “adaptive crises” that mimic the transition to a lower energy level of adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anand IS, Harris E, Ferrari R, Pears P, Harris P (1986) Pulmonary haemodynamics of the yak, cattle and cross breeds at high altitude. Thorax 41:696–700

    PubMed  CAS  Google Scholar 

  • Bärtsch P, Mairbaurl H, Maggiorini M, Swenson ER (2005) Physiological aspects of high-altitude pulmonary edema. J Appl Physiol 98:1101–1110

    Article  PubMed  CAS  Google Scholar 

  • Beall CM, Decker MJ, Brittenham GM, Kushner I, Gebremedhin A, Strohl KP (2002) An Ethiopian pattern of human adaptation to high-altitude hypoxia. Proc Natl Acad Sci USA 99:17215–17218

    Article  PubMed  CAS  Google Scholar 

  • Berger MM, Hesse C, Dehnert C, Siedler H, Kleinbongard P, Bardenheuer HJ, Kelm M, Bartsch P, Haefeli WE (2005) Hypoxia impairs systemic endothelial function in individuals prone to high-altitude pulmonary edema. Am J Respir Crit Care Med 172:763–767

    Article  PubMed  Google Scholar 

  • Fluck M, Hoppeler H (2003) Molecular basis of skeletal muscle plasticity—from gene to form and function. Rev Physiol Biochem Pharmacol 146:159–216

    Article  PubMed  CAS  Google Scholar 

  • Ge RL, Kubo K, Kobayashi T, Sekiguchi M, Honda T (1998) Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am J Physiol 274:H1792–H1799

    PubMed  CAS  Google Scholar 

  • Lahiri S, Cherniak NS (2001) Cellular and molecular mechanisms of O2 sensing with special reference to the carotid body. In: Hornbein TF, Schoene RN (eds) High altitude. An exploration of human adaptation. Marcel Dekker Inc., New York, Basel, pp 101–130

    Google Scholar 

  • Leon-Velarde F, Mejia O, Palacios JA, Monge C (1997) Changes in whole blood oxygen affinity and eggshell permeability in high altitude chickens translocated to sea level. Comp Biochem Physiol B Biochem Mol Biol 118:53–57

    Article  PubMed  CAS  Google Scholar 

  • Leon-Velarde F, Richalet JP, Chavez JC, Kacimi R, Rivera-Chira M, Palacios JA, Clark D (1998) Inter and intra-species-related differences in the regulation of the cardiac autonomic system. Comp Biochem Physiol B Biochem Mol Biol 119:819–823, 441

    Article  PubMed  CAS  Google Scholar 

  • Llanos AJ, Riquelme RA, Sanhueza EM, Hanson MA, Blanco CE, Parer JT, Herrera EA, Pulgar VM, Reyes RV, Cabello G, Giussani DA (2003) The fetal llama versus the fetal sheep: different strategies to withstand hypoxia. High Alt Med Biol 4:193–202

    Article  PubMed  Google Scholar 

  • Mejia O, Leon-Velarde F, Monge C (1994) The effect of inositol hexaphosphate in the high-affinity hemoglobin of the Andean chicken (Gallus gallus). Comp Biochem Physiol B Biochem Mol Biol 109:437–441

    Article  PubMed  CAS  Google Scholar 

  • Monge C, Leon-Velarde F (1991) Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol Rev 71:1135–1172

    PubMed  CAS  Google Scholar 

  • Monge CC, Arregui A, Leon-Velarde F (1992) Pathophysiology and epidemiology of chronic mountain sickness. Int J Sports Med 13(Suppl 1):S79–S81

    Google Scholar 

  • Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729

    Article  PubMed  CAS  Google Scholar 

  • Niermeyer S, Zamudio S, Moore LG (2001) The people. In: Hornbein TF, Schoene RB (eds) High altitude. An exploration of human adaptation. Marcel Dekker, New-York, Basel, pp 43–100

    Google Scholar 

  • Richalet JP, Herry JP (2006) Médecine de l’alpinisme et des sports de montagne, 4th edn. Masson, Paris

    Google Scholar 

  • Richalet JP (1995) High-altitude pulmonary oedema. Still a place for controversy? Thorax 50:923–929

    Article  PubMed  CAS  Google Scholar 

  • Richalet JP, Hornych A, Rathat C, Aumont J, Larmignat P, Remy P (1991) Plasma prostaglandins, leukotrienes and thromboxane in acute high altitude hypoxia. Respir Physiol 85:205–215

    Article  PubMed  CAS  Google Scholar 

  • Richalet JP, Kacimi R, Antezana AM (1992) The control of chronotropic function in hypobaric hypoxia. Int J Sports Med 13:S22–S24

    PubMed  Google Scholar 

  • Richalet JP (1997) Oxygen sensors in the organism: examples of regulation under altitude hypoxia in mammals. Comp Biochem Physiol A Physiol 118:9–14

    Article  PubMed  CAS  Google Scholar 

  • Ruffié J (1982) Traité du vivant. Fayard, Paris

    Google Scholar 

  • Saxena S, Kumar R, Madan T, Gupta V, Muralidhar K, Sarma PU (2005) Association of polymorphisms in pulmonary surfactant protein A1 and A2 genes with high-altitude pulmonary edema. Chest 128:1611–1619

    Article  PubMed  CAS  Google Scholar 

  • Swallow DM (2003) Genetics of lactase persistence and lactose intolerance. Annu Rev Genet 37:197–219

    Article  PubMed  CAS  Google Scholar 

  • Ward MP, Milledge JS, West JB (2000) High altitude medicine and physiology, 3rd edn. Arnold, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Richalet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Richalet, JP. (2006). A proposed classification of environmental adaptation: the example of high altitude. In: Amils, R., Ellis-Evans, C., Hinghofer-Szalkay, H. (eds) Life in Extreme Environments. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6285-8_27

Download citation

Publish with us

Policies and ethics