Skip to main content

Energy dependant plant stress acclimation

  • Review Paper
  • Chapter
  • First Online:
Life in Extreme Environments

Abstract

Plants may live and grow under suboptimal environmental conditions having certain biochemical and metabolic adaptations that facilitate their survival. Plant “metabolic flexibility” consists of the accomplishment of the same step in a metabolic pathway in a variety of different ways. Pyrophosphate which works as an energy donor when cellular ATP pools become diminished during stresses, alternative glycolytic reactions that bypass ATP-requiring steps, additional pathways for electron transport in plant mithocondria and the salvage pathways are some of the aspects related to “energetic flexibility”. This key feature that plays an important role in plant acclimation to stress can be an important target for engineering enhanced stress tolerance in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brodo I, Sharnoff Duran S, Sharnoff S (2001) Lichens of North America. Yale University Press, New Haven

    Google Scholar 

  • Chivasaa S, Bongani K, Ndimbab W, Simonc J, Lindseyc K, Slabasc A (2005) Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability. Plant Cell 17:3019–3034

    Article  CAS  Google Scholar 

  • Cohn M (2001) Adenosine triphosphate. In: Encyclopedia of life science. Nature Publishing Group

    Google Scholar 

  • Davies JM, Poole RJ, Sanders D (1993) The computed free energy changes of hydrolysis of inorganic pyrophosphate and ATP: apparent significance of inorganic-pyrophosphate-driven reactions of intermediary metabolism. Biochim Biophys Acta 1141:29–36

    Article  CAS  Google Scholar 

  • DeBlock M, Verduyn C, De Brouwer D, Cornelissen M (2005) Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 41:95–106

    Article  CAS  Google Scholar 

  • Demidchik V, Nichols C, Oliynyk M, Dark A, Glover BJ, Davies JM (2003) Is ATP a signaling agent in plants? Plant Physiol 133:456–461

    Article  PubMed  CAS  Google Scholar 

  • Dobrotă C (2004) The biology of phosphorus. In: Valsamy-Jones E, Gray R (eds) Phosphorus in environmental technology: principles and applications. IWA Publishers, London, pp 51–77

    Google Scholar 

  • Duff SMG, Moorhead GBG, Lefebvre DD, Plaxton WC (1989) Phosphate starvation inducible ‘bypasses’ of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol 90:1275–1278

    Article  PubMed  CAS  Google Scholar 

  • Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plantarum 126(1):28–44

    Article  CAS  Google Scholar 

  • Greene R (2002) Oxidative stress and acclimation mechanisms in plants. The Arabidopsis Book: Vol. 49, No. 1 pp. 1–20, BioOne Publishers, Washington

    Google Scholar 

  • Gurley WB (2000) HSP101: a key component for the acquisition of thermotolerance in plants. Plant Cell 12:457–460

    Article  PubMed  CAS  Google Scholar 

  • Hamilton SG, Warburton J, Bhattacharjee A, Ward J, McMahon S (2000) ATP in human skin elicits a dose-related pain response which is potentiated under conditions of hyperalgesia. Brain 123(6):1238–1246

    Article  PubMed  Google Scholar 

  • Huang S, Greenway H, Colmerm TD, Millar AH (2005) Protein synthesis by rice coleoptiles during prolonged anoxia: Implications for glycolysis, growth and energy utilization. Ann Bot 96:703–715

    Article  PubMed  CAS  Google Scholar 

  • Kacperska A (2004) Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physiol Plant 122:159–168

    Article  CAS  Google Scholar 

  • Kwon SJ, Choi EY, Choi YJ, Ahn JH, Park O (2006) Proteomics studies of post-translational modifications in plants. J Exp Bot 57(7):1547–1551

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Ford E, Haigis M, Liszt G, Guarente G (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18:12–16

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276

    Article  PubMed  CAS  Google Scholar 

  • Messerli MA, Amaral-Zettler LA, Zettler E, Jung SK, Smith PJS, Sogin ML (2005) Life at acidic pH impose an increase energetic cost for eukaryotic acidophile. J Exp Biol 208:2569–2579

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2005) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  Google Scholar 

  • Mustroph A, Albrecht G, Hajirezaei M, Grimm B, Biemelt S (2005) Low levels of pyrophosphate in transgenic potato plants expressing E.coli pyrophosphatase lead to decreased vitality under oxygen deficiency. Ann Bot 96:717–726

    Article  PubMed  CAS  Google Scholar 

  • Öquist G, Huner NPA (1993) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355

    Article  PubMed  CAS  Google Scholar 

  • Palma DA, Blumwald E, Plaxton WC (2000) Upregulation of vacuolar H+-translocating pyrophosphatase by phosphate starvation of Brassica napus (rapeseed) suspension cell cultures. FEBS Lett 486:155–158

    Article  PubMed  CAS  Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8:33–41

    Article  PubMed  CAS  Google Scholar 

  • Plaxton WC (2004) Plant response to stress: Biochemical adaptations to phosphate deficiency. In: Goodman R (ed) Encyclopedia of plant and crop science. Marcel Dekker, Inc., NY

    Google Scholar 

  • Plaxton WC (2002) Metabolic flexibility helps plants to survive stress. Web-essay (www.plantphys.net) supplement the 3rd edition of Plant Physiology (textbook by Taiz & Zeiger)

    Google Scholar 

  • Plaxton WC (1999) Metabolic aspects of phosphate starvation in plants. In: Deikman J, Lynch J (eds) Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystem processes. American Society of Plant Physiologists, Rockville, pp 164–176

    Google Scholar 

  • Plaxton WC, Carswell MC (1999). Metabolic aspects of the phosphate starvation response in plants. In: Lerner HR (ed) Plant responses to environmental stress: from phytohormones to genome reorganization. Marcel-Dekker, New York, NY, USA, pp 350–372

    Google Scholar 

  • Plaxton WC (1996) The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol 47:185–214

    Article  PubMed  CAS  Google Scholar 

  • Purvis W (2000) Lichens natural history museum. Natural World Series, London

    Google Scholar 

  • Renaut J, Hausman J-F, Wisniewski ME (2006) Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiol Plantarum 126(1):97–109

    Article  CAS  Google Scholar 

  • Roth GS, Ingram DK, Lane MA (2001) Caloric restriction in primates and relevance to humans. Ann NY Acad Sci 928:305–315

    Article  PubMed  CAS  Google Scholar 

  • Sperlágh B, Vizi ES (1996) Neuronal synthesis, storage and release of ATP. Semin Neurosci 8:175–186

    Article  Google Scholar 

  • Stitt M (1998) Pyrophosphate as an energy donor in the cytosol of plant cells: an enigmatic alternative to ATP. Bot Acta 111:167–175

    CAS  Google Scholar 

  • Stupnikova I, Benamar A, Tolleter D, Grelet J, Borovskii G, Dorne A, Macherel D (2006) Pea seed mitochondria are endowed with a remarkable tolerance to extreme physiological temperatures. Plant Physiol 140:326–335

    Article  PubMed  CAS  Google Scholar 

  • Theodorou ME, Plaxton WC (1996). Purification and characterization of pyrophosphate-dependent phosphofructokinase from phosphate-starved Brassica nigra suspension cells. Plant Physiol 112:343–351

    Article  PubMed  CAS  Google Scholar 

  • Theodorou ME, Cornel FA, Duff SM, Plaxton WC (1992) Phosphate starvation-inducible synthesis of the alpha-subunit of the pyrophosphate-dependent phosphofructokinase in black mustard suspension cells. J Biol Chem 267:21901–21905

    PubMed  CAS  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157(3):423–424

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Dobrota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dobrota, C. (2006). Energy dependant plant stress acclimation. In: Amils, R., Ellis-Evans, C., Hinghofer-Szalkay, H. (eds) Life in Extreme Environments. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6285-8_17

Download citation

Publish with us

Policies and ethics