Skip to main content

Ecology and molecular adaptations of the halophilic black yeast Hortaea werneckii

  • Review Paper
  • Chapter
  • First Online:
Life in Extreme Environments

Abstract

Molecular studies on halophilic adaptations have focused on prokaryotic microorganisms due to a lack of known appropriate eukaryotic halophilic microorganisms. However, the black yeast Hortaea werneckii has been identified as the dominant fungal species in hypersaline waters on three continents. It represents a new model organism for studying the mechanisms of salt tolerance in eukaryotes. Ultrastructural studies of the H. werneckii cell wall have shown that it synthesizes dihydroxynaphthalene (DHN) melanin under both saline and non-saline growth conditions. However, melanin granules in the cell walls are organized in a salt-dependent way, implying the potential osmoprotectant role of melanin. At the level of membrane structure, H. werneckii maintains a sterol-to-phospholipid ratio significantly lower than the salt-sensitive Saccharomyces cerevisiae. Accordingly, membranes of H. werneckii are more fluid over a wide range of NaCl concentrations, indicating high intrinsic salt stress tolerance. Even H. werneckii grown in high NaCl concentrations maintains very low intracellular amounts of potassium and sodium, demonstrating the sodium-excluder character of this organism. The salt-dependent expressions of two HwENA genes suggest roles for them in the adaptation to changing salt concentrations. The high similarity of these ENA ATPases to other fungal ENA ATPases involved in Na+/K+ transport indicates their potential importance in H. werneckii ion homeostasis. Glycerol is the main compatible solute which accumulates in the cytoplasm of H. werneckii at high salinity, although it seems that mycosporines may also act as supplementary compatible solutes. Salt dependent increase in glycerol synthesis is supported by the identification of two copies of a gene putatively coding for glycerol-3-phosphate-dehydrogenase. Expression of only one of these genes is salt dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almagro A, Prista C, Quintas C, Madeira Lopes A, Ramos J, Loureiro-Dias MC (2000) Effects of salts on Debaryomyces hansenii and Saccharomyces cerevisiae under stress conditions. Int J Food Microbiol 56:191–197

    Article  PubMed  CAS  Google Scholar 

  • Almagro A, Prista C, Benito B, Loureiro-Dias MC, Ramos J (2001) Cloning and expression of two genes coding for sodium pumps in the salt-tolerant yeast Debaryomyces hansenii. J Bacteriol 183(10):3251–3255

    Article  PubMed  CAS  Google Scholar 

  • Andre L, Nillsson A, Adler L (1988) The role of glycerol in osmotolerance of the yeast Debaromyces hansenii. J Gen Microbiol 134:669–677

    CAS  Google Scholar 

  • Andreishcheva EN, Isakova EP, Sidorov NN, Abramova NB, Ushakova NA, Shaposhnikov GL, Soares MIM, Zvyagilskaya RA (1999) Adaptation to salt stress in a salt-tolerant strain of the yeast Yarrowia lipolytica. Biochemistry 64(9):1061–1067 (Moscow)

    PubMed  CAS  Google Scholar 

  • Andrews S, Pitt JI (1987) Further studies on the water relations of xerophilic fungi, including some halophiles. J Gen Microbiol 133:233–238

    CAS  Google Scholar 

  • Bandaranayake WM (1998) Mycosporines: are they nature’s sunscreens? Nat Prod Rep 15(2):159–172

    Article  PubMed  CAS  Google Scholar 

  • Banuelos MA, Rodriguez-Navarro A (1998) P-type ATPases mediate sodium and potassium effluxes in Schwanniomyces occidentalis. J Biol Chem 273(3):1640–1646

    Article  PubMed  CAS  Google Scholar 

  • Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:411–451

    Article  CAS  Google Scholar 

  • Benito B, Garciadeblas B, Rodriguez-Navarro A (2002) Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi. Microbiology 148(Pt 4):933–941

    PubMed  CAS  Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212

    Article  PubMed  CAS  Google Scholar 

  • Blomberg A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244(2):229–234

    Article  PubMed  CAS  Google Scholar 

  • Elliot ML, Henson JM (2001) Effect of osmotic stress on growth of Gaeumannomyces graminis strains differing in hyphal pigmentation. Mycologia 93(4):617–625

    Article  Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:272–328

    PubMed  CAS  Google Scholar 

  • Garciadeblas B, Rubio F, Quintero FJ, Banuelos MA, Haro R, Rodriguez-Navarro A (1993) Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol Gen Genet 236(2–3):363–368

    Article  PubMed  CAS  Google Scholar 

  • Gorbushina AA, Krumbein WE, Hamann CH, Panina LK, Soukharjevski SM, Wollenzien U (1993) Role of black fungi in color change and biodeterioration of antique marbles. Geomicrobiol J 11:205–211

    Google Scholar 

  • Göttlich E, de Hoog GS, Yoshida S, Takeo K, Nishimura K, Miyaji M (1995) Cell surface hydrophobicity and lipolysis as essential factors in human tinea nigra. Mycoses 38:489–494

    PubMed  Google Scholar 

  • Gunde-Cimerman N, Frisvad JC, Zalar P, Plemenitaš A (2005) Halotolerant and halophilic fungi. Oxford & IBH Publishing Co. Pvt. Ltd.

    Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog GS, Plemenitaš A (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32(3):235–240

    CAS  Google Scholar 

  • Holker U, Bend J, Pracht R, Tetsch L, Muller T, Hofer M, de Hoog GS (2004) Hortaea acidophila, a new acid-tolerant black yeast from lignite. Anton Van Leeuwen 86(4):287–294

    Article  CAS  Google Scholar 

  • de Hoog GS (1993) Evolution of black yeasts: possible adaptation to the human host. Anton Van Leeuwen 63:105–109

    Article  Google Scholar 

  • de Hoog G, Hermanides-Nijhof E (1977) Survey of black yeasts and allied fungi. Stud Mycol 15:178–221

    Google Scholar 

  • de Hoog GS, Gerrits van den Ende AHG (1992) Nutritional pattern and eco-physiology of Hortaea werneckii, agent of human tinea nigra. Anton Van Leeuwen 62:321–329

    Google Scholar 

  • de Hoog GS, Guého E (1998) Agents of white piedra, black piedra and tinea nigra. In: Asello L, Hay RJ (eds) Topley and Wilsons microbiology and microbial infections, 3rd edn., vol 4. Arnold, London, pp 1–15

    Google Scholar 

  • de Hoog GS, Zalar P, Urzi C, de Leo F, Yurlova NA, Sterflinger K (1999) Relationships of dothideaceous black yeasts and meristematic fungi based on 5.8S and ITS2 rDNA sequence comparison. Stud Mycol 43:33–40

    Google Scholar 

  • Hosono K (1992) Effect of salt stress on lipid composition and membrane fluidity of the salt-tolerant yeast Zygosaccharomyces rouxii. J Gen Microbiol 138:91–96

    CAS  Google Scholar 

  • Iwatsu T, Udagawa S (1988) Hortaea werneckii isolated from sea-water. Jpn J Med Mycol 29(2):142–145

    Article  Google Scholar 

  • Khaware RK, Koul A, Prasad R (1995) High membrane fluidity is related to NaCl stress in Candida membranefaciens. Biochem Mol Biol Int 35(4):875–880

    PubMed  CAS  Google Scholar 

  • Kogej T (2006) Physiological adaptations of halophilic black yeast Hortaea werneckii to growth at saline conditions on the levels of cell wall and accumulation of compatible solutes. Doctoral Thesis, Ljubljana, 198 pp

    Google Scholar 

  • Kogej T, Gostinčar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006) Mycosporines in extremophilic fungi – novel complementary osmolytes? Environ Chem 3(2):105–110

    Article  CAS  Google Scholar 

  • Kogej T, Ramos J, Plemenitaš A, Gunde-Cimerman N (2005) The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 71(11):6600–6605

    Article  PubMed  CAS  Google Scholar 

  • Kogej T, Wheeler MH, Lanišnik Rižner T, Gunde-Cimerman N (2004) Evidence for 1,8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol Lett 232(2):203–209

    Article  PubMed  CAS  Google Scholar 

  • Krumbein WE, Gorbushina AA, Sterflinger K, Haroska U, Kunert U, Drewello R, Weißmann R (1996) Biodeterioration of historical window panels of the former Cistercian Monastery church of Haina (Hessen, Germany). DECHEMA Monographs 133:417–424

    Google Scholar 

  • Leach CM (1965) Ultraviolet-absorbing substances associated with light-induced sporulation in fungi. Can J Bot 43:185–200

    CAS  Google Scholar 

  • Libkind D, Perez P, Sommaruga R, Dieguez Mdel C, Ferraro M, Brizzio S, Zagarese H, van Broock M (2004) Constitutive and UV-inducible synthesis of photoprotective compounds (carotenoids and mycosporines) by freshwater yeasts. Photochem Photobiol Sci 3(3):281–286

    Article  PubMed  CAS  Google Scholar 

  • Mok WYC, Barreto da Silva MS (1981) Occurrence of Exophiala werneckii on salted freshwater fish Osteoglossum bicirrhosum. J Food Technol 16:505–512

    Article  Google Scholar 

  • Nevoigt E, Stahl U (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21(3):231–241

    Article  PubMed  CAS  Google Scholar 

  • Nienow JA, Friedman EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic Microbiology (Wiley Series in Ecological and Applied Microbiology), pp 342–412. Wiley-Liss, 644 pp

    Google Scholar 

  • Oren A (1997) Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol J 14:231–240

    Article  CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63(2):334–348

    PubMed  CAS  Google Scholar 

  • Petrovič U, Gunde-Cimerman N, Plemenitaš A (1999) Salt stress affects sterol biosynthesis in the halophilic black yeast Hortaea werneckii. FEMS Microbiol Lett 180(2):325–330

    Article  PubMed  Google Scholar 

  • Petrovič U, Gunde-Cimerman N, Plemenitaš A (2002) Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Mol Microbiol 45(3):665–672

    Article  PubMed  Google Scholar 

  • Pfyffer GE, Pfyffer BU, Rast DM (1986) The polyol pattern, chemotaxonomy, and phylogeny of the fungi. Sydowia 39:160–201

    Google Scholar 

  • Plemenitaš A, Gunde-Cimerman N (2005) Cellular reponses in the halophilic black yeast Hortaea weneckii to high environmental salinity. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archea, Bacteria and Eukarya. Springer, Dordrecht, The Netherlands, pp 455–470

    Google Scholar 

  • Prista C, Loureiro-Dias MC, Montiel V, García R, Ramos J (2005) Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res 5:693–701

    Article  PubMed  CAS  Google Scholar 

  • Ramos J (1999) Contrasting salt tolerance mechanisms in Saccharomyces cerevisiae and Debaryomyces hansenii. In: Pandalai SG (ed) Recent research developments in microbiology, vol 3. Research Signpost, Trivandrum, India, pp 377–390

    Google Scholar 

  • Ramos J (2005) Introducing Debaryomyces hansenii, a salt-loving yeast. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archea, Bacteria and Eukarya. Springer, Dordrecht, The Netherlands, pp 441–451

    Chapter  Google Scholar 

  • Russell NJ (1989a) Adaptive modifications in membranes of halotolerant and halophilic microorganisms. J Bioenerg Biomembr 21(1):93–113

    Article  CAS  Google Scholar 

  • Russell NJ (1989b) Structural and functional role of lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids. Academic Press, New York, pp 279–349

    Google Scholar 

  • Russell NJ, Evans, RI, ter Steeg PF, Hellemons J, Verheul A, Abee T (1995) Membranes as a target for stress adaptation. Int J Food Microbiol 28(2):255–261

    Article  PubMed  CAS  Google Scholar 

  • Sharma SC, Raj D, Forouzandeh M, Bansal MP (1996) Salt-induced changes in lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Appl Biochem Biotechnol 56(2):189–195

    PubMed  CAS  Google Scholar 

  • Silva-Graça M, Lucas C (2003) Physiological studies on long-term adaptation to salt stress in the extremely halotolerant yeast Candida versatilis CBS 4019 (syn C. halophila). FEMS Yeast Res 3(3):247–260

    Article  PubMed  Google Scholar 

  • Slaninova I, Sestak S, Svoboda A, Farkas V (2000) Cell wall and cytoskeleton reorganization as the response to hyperosmotic shock in Saccharomyces cerevisiae. Arch Microbiol 173(4):245–252

    Article  PubMed  CAS  Google Scholar 

  • Staley JT, Palmer F, Adams JB (1982) Microcolonial fungi: common inhabitants on desert rocks? Science 215:1093–1095

    Article  PubMed  CAS  Google Scholar 

  • Sterflinger K, de Hoog GS, Haase G (1999) Phylogeny and ecology of meristematic ascomycetes. Stud Mycol 43:5–22

    Google Scholar 

  • Todaro F, Berdar A, Cavaliere A, Criseo G, Pernice L (1983) Gasophtalmus in black sea bream (Spodyliosoma cantharus) caused by Sarcynomyces crustaceus Lindner. Mycopathologia 81:95–97

    Article  PubMed  CAS  Google Scholar 

  • Trione EJ, Leach CM, Mutch JT (1966) Sporogenic substances isolated from fungi. Nature 212:163–164

    Article  PubMed  CAS  Google Scholar 

  • Tunblad-Johansson I, Adler L (1987) Effect of sodium chloride concentration on phospholipid fatty acid composition of yeasts differing in osmotolerance. FEMS Microbiol Lett 43:275–278

    Article  CAS  Google Scholar 

  • Turk M, Plemenitaš A (2002) The HOG pathway in the halophilic black yeast Hortaea werneckii: isolation of the HOG1 homolog gene and activation of HwHog1p. FEMS Microbiol Lett 216(2):193–199

    Article  PubMed  CAS  Google Scholar 

  • Turk M, Mejanelle L, Sentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitaš A (2004) Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8(1):53–61

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Iwaki T, Shimono Y, Ichimiya A, Nagaoka Y, Tamai Y (1999) Characterization of the Na+-ATPase gene (ZENA1) from the salt-tolerant yeast Zygosaccharomyces rouxii. J Biosci Bioeng 88(2):136–142

    Article  PubMed  CAS  Google Scholar 

  • Wollenzien U, de Hoog GS, Krumbein WE, Urzì C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Tot Env 167:287–294

    Article  CAS  Google Scholar 

  • Yoshikawa S, Mitsui N, Chikara KI, Hashimoto H, Shimosaka M, Okazaki M (1995) Effect of salt stress on plasma membrane permeability and lipid saturation in the salt-tolerant yeast Zygosaccharomyces rouxii. J Ferment Bioener 80(2):131–135

    Article  CAS  Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999) Ecology of halotolerant dothideaceous black yeasts. Stud Mycol 43:38–48

    Google Scholar 

  • Zalar P, Kocuvan MA, Plemenitaš A, Gunde-Cimerman N (2005) Halophilic black yeast colonize wood immersed in hypersaline water. Bot Mar 48:323–326

    Article  Google Scholar 

  • Zhdanova NN, Pokhodenko VD (1973) The possible participation of a melanin pigment in the protection of the fungus cell from desiccation. Microbiology 42:753–757

    Google Scholar 

  • Zhdanova NN, Borisyuk LG, Artzatbanov VY (1990) Ocurrence of the K-type of life strategy in some melanin-containing fungi under experimental conditions. Folia Microbiol 35:423–430

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Gunde-Cimerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gunde-Cimerman, N., Plemenitaš, A. (2006). Ecology and molecular adaptations of the halophilic black yeast Hortaea werneckii . In: Amils, R., Ellis-Evans, C., Hinghofer-Szalkay, H. (eds) Life in Extreme Environments. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6285-8_11

Download citation

Publish with us

Policies and ethics