Advertisement

Access to glacial and subglacial environments in the Solar System by melting probe technology

  • Stephan Ulamec
  • Jens Biele
  • Oliver Funke
  • Marc Engelhardt
Review Paper

Abstract

A key aspect for understanding the biological and biochemical environment of subglacial waters, on Earth or other planets and moons in the Solar system, is the analysis of material embedded in or underneath icy layers on the surface. In particular the Antarctic lakes (most prominently Lake Vostok) but also the icy crust of Jupiter’s moon Europa or the polar caps of Mars require such investigation. One possible technique to penetrate thick ice layers with small and reliable probes is by melting, which does not require the heavy, complex and expensive equipment of a drilling rig. While melting probes have successfully been used for terrestrial applications e.g. in Antarctic ice, their performance in vacuum is different and theory needs confirmation by tests. Thus, a vacuum chamber has been used to perform a series of melting tests in cold (liquid nitrogen cooled) water ice samples. The feasibility of the method was demonstrated and the energy demand for a space mission could be estimated. Due to the high energy demand in case of extraterrestrial application (e.g. Europa or polar caps of Mars), only heating with radioactive isotopes seems feasible for reaching greater depths. The necessary power is driven by the desired penetration velocity (approximately linearly) and the dimensions of the probe (proportional to the cross section). In comparison to traditional drilling techniques the application of a melting probe for exploration of Antarctic lakes offers the advantage that biological contamination is minimized, since the Probe can be sterilized and the melting channel freezes immediately after the probe’s passage, inhibiting exchange with the surface layers and the atmosphere. In order to understand the physical and chemical nature of the ice layers, as well as for analysing the underlying water body, a melting probe needs to be equipped with a suite of scientific instruments that are capable of e.g. determining the chemical and isotopic composition of the embedded or dissolved materials.

Keywords

Melting Probe Subglacial Europa Mars Antarctic Lakes Ice Technology Life in extreme environments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aamot HWC (1967a) Pendulum steering for thermal probes in glaciers. J Glaciol 6:935–939Google Scholar
  2. Aamot HWC (1967b) The Philberth probe for investigating polar ice caps CRREL Special Report 119. Cold Regions Research & Engineering Laboratory, Hanover, New HamphireGoogle Scholar
  3. Aamot HWC (1967c) Heat transfer and performance of a thermal probe for glaciers CRREL Special Report 194. Cold Regions Research & Engineering Laboratory, Hanover, New HamphireGoogle Scholar
  4. Aamot HWC (1968) Instrumented probes for deep glacial investigations. CRREL Special Report 210, Cold Regions Research & Engineering Laboratory, Hanover, New Hamphire, 1968. Same as Aamot, HWC, (1970) Instrumented Probes for Deep Glacial Investigations. J Glac 7 (50):321–328Google Scholar
  5. Aamot HWC (1970a) Self-contained thermal probes for remote measurements within an ice sheet. In: International Symposium on Antarctic Glaciological Exploration (ISAGE), Hanover, N. H., September 3–7, 1968; International Association of Scientific Hydrology Publication 86:63–68Google Scholar
  6. Aamot HWC (1970b) Development of a Vertically Stabilized Thermal Probe for Studies in and Below Ice Sheets, J Eng Industry 92B(2):263–268, Transactions of the ASME, paper no. 69-WA/UnT-3Google Scholar
  7. Anderson J, Schubert G, Jacobsen R, Lau E, Moore W, Sjogren W (1998) Europa’s differentiated internal structure: interferences from four Galileo encounters. Science 281:2019–2022PubMedCrossRefGoogle Scholar
  8. AWI/Jokat W, Oerter H (eds) (1997) Die Expedition ANTARKTIS-XII mit FS “Polarstern 1995, Bericht vom Fahrtabschnitt ANT-XII/3”, Berichte zur Polarforschung, Alfred-Wegener-Institut für Polar- und Meeresforschung, 27568 Bremerhaven, Germany, 219:106–111Google Scholar
  9. Ballou EV, Wood PC, Wydeven T, Lehwalt ME, Mack R (1978) Chemical interpretation of viking lander 1 life detection experiment. Nature 271:644–645CrossRefGoogle Scholar
  10. Bibring JP, Langevin Y, Poulet F, Gendrin A, Gondet B, Berthé M, Soufflot A, Drossart P, Combes M, Bellucci G, Moroz V, Mangold N, Schmitt B, OMEGA Team (2004) Perennial water ice identified in the south polar cap of Mars. Nature 428:627–630PubMedCrossRefGoogle Scholar
  11. Biele J, Ulamec S, Garry J, Sheridan S, Morse AD, Barber S, Wright I, Tüg H, Mock T (2002) Melting Probes at Lake Vostok and Europa. In: Proceedings of the First European Workshop on Exo/Astrobiology. ESA SP 518:305–308Google Scholar
  12. Cardell G, Hecht MH, Carsey FD, Engelhardt H, Fisher D, Terrell C, Thompson J (2004) The Subsurface Ice Probe (SIPR): A Low-Power Thermal Probe for the Martian Polar Layered Deposits, 35th Lunar and Planetary Science Conference, March 15–19, 2004, League City, Texas, abstract no. 2041Google Scholar
  13. Carsey FD, Chen G-S, Cutts J, French L, Kern R, Lane AL, Stolorz P, Zimmermann W (1999) Exploring Europa’s Ocean: a challenge for marine technology of this century. MTS Journal 33(4):5–12Google Scholar
  14. Cassen P, Peale SJ, Reynolds RT (1980) Tidal dissipation in Europa: A correction. Geophys Res Lett 7:987–988Google Scholar
  15. Cassen P, Reynolds RT, Peale SJ (1979) Is there liquid water on Europa?. Geophys Res Lett 6:731–734Google Scholar
  16. Clifford SM et al. (2001) The state and future of mars polar science and exploration. Icarus 144:210–242CrossRefGoogle Scholar
  17. Clow GD, Koci B (2002) A Fast Mechanical Access Drill for Polar Glaciology, Paleoclimatology, Geology, Tectonics and Biology. Mem Natl Inst Polar Res Spec Issue 56:1–00Google Scholar
  18. DiPippo S, Mugnuolo R, Vielmo P, Prendin W (1999) The exploitation of Europa ice and water basins: an assessment on required technological developments, on system design approaches and on relevant expected benefits to space- and earth-based activities. Planet Space Sci 47:921–933CrossRefGoogle Scholar
  19. Engelhardt H, Humphrey N, Kamb B, Fahnestock M (1990) Physical conditions at the base of a fast moving Antarctic ice stream. Science 248:57–59CrossRefPubMedGoogle Scholar
  20. Engelhardt H, Kamb B, Bolsey R (2000) A hot-water ice-coring drill. J Glaciol 46(153):141–145CrossRefGoogle Scholar
  21. Engelhardt M (2006) Investigation of decontamination procedures for application on melting probes according to present Planetary Protection rules, Master of Science Thesis, Aachen University of Applied Sciences, Jülich campus, Department of Applied Sciences and TechnologyGoogle Scholar
  22. Fishbaugh KE, Head JW (2001) Comparison of the North and South polar caps of mars: new observations from MOLA data and discussion of some outstanding questions. Icarus 154:145–161CrossRefGoogle Scholar
  23. Gantt LL, Oba EM, Leising L, Stagg T, Stanley M, Walker E, Walker R (1998) Coiled tube drilling on the Alaskan North Slope. Oilfield Rev 10(2):20–35Google Scholar
  24. Giles J (2004) Russian bid to drill Antarctic lake gets chilly response. Nature 430:494PubMedCrossRefGoogle Scholar
  25. Godwin R (Editor) (2000) Mars – The NASA Mission Reports. Apogee Books, Burlington Ont., CanadaGoogle Scholar
  26. Greenberg R, Hoppa GV, Tufts BR, Geissler P, Riley J, Kadel S (1999) Chaos on Europa. Icarus 141:263–268CrossRefGoogle Scholar
  27. Greenberg R, Geissler P (2002) Europa’s dynamic icy crust: An invited review. Meteoritics and Planetary Sci 37:1685–1711CrossRefGoogle Scholar
  28. Greenberg R, Tufts BR, Geissler P, Hoppa GV (2001) Europa’s Crust and Ocean: How Tides create a potentially habitable physical setting. In: Astrobiology, pp 111–124, Springer Verlag Berlin/Heidelberg/New YorkGoogle Scholar
  29. Greenberg R(2005) Europa The Ocean Moon. Springer Verlag, Berlin, New YorkGoogle Scholar
  30. Gromov VV, Misckevich AV, Yudkin EN, Kochan H, Coste P, Re E (1997) The Mobile Penetrometer, a “Mole” for Sub-Surface Soil Investigation. 7th European Space Mechanisms and Tribology Symposium, ESA SP-410. pp 151–156Google Scholar
  31. Harland D (2000) Jupiter Odyssey. Springer Praxis, Berlin and New YorkGoogle Scholar
  32. Hansen BL, Kersten L (1984) An In-situ Sampling Thermal Probe. In: Holdsworth G et al. (eds) Ice Drilling Technology. USA CRREL Special Report 84–34Google Scholar
  33. Irvine WM, Pollack JB (1968) Infrared optical properties of water and ice spheres. Icarus 8:324–360CrossRefGoogle Scholar
  34. Kasser H (1960) Ein leichter thermischer Eisbohrer als Hilfgerät zur Installation von Ablationsstangen auf Gletschern. Geofisica Pura e Applicata 45(1):97–114CrossRefGoogle Scholar
  35. Kelty JR (1995) An in situ sampling thermal probe for studying global ice sheets. Ph.D. thesis, University of NebraskaGoogle Scholar
  36. Khurana KK, Kivelson MG, Stevenson DJ, Schubert G, Russell CT, Walker RJ, Polansky C (1998) Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395:777–780PubMedCrossRefGoogle Scholar
  37. Kömle NI, Kargl G, Steller M (2002) Melting probes as a means to explore planetary glaciers and ice caps. In: Proceedings of the First European Workshop on Exo-Astrobiology, ESA SP-518: 305–308Google Scholar
  38. Kömle NI, Treffer M, Kargl G, Kaufmann E, Steller M (2004) Development of Melting Probes for Exploring Ice Sheets and Permafrost Layers, presented at the 6th International Symposium on Permafrost Engineering, Lanzhou, China, 5–7 September 2004Google Scholar
  39. Kuiper G (1957) Infrared observations of planets and satellites. Astronomical Journal 62:245CrossRefGoogle Scholar
  40. Lebreton JP et al (2005) An overview of the descent and landing of the Huygens probe on Titan. Nature 438:758–764PubMedCrossRefGoogle Scholar
  41. Lucchitta BK, Soderblom LA (1982) The Geology of Europa. In: Morrison D (ed) The Satellites of Jupiter. University of Arizona Press, Tucson, pp. 521–555Google Scholar
  42. Maurer WilliamC (1968) Novel drilling techniques. Pergamon, OxfordGoogle Scholar
  43. Mellor M, Introduction to drilling technology, In: ESA SP-302, Physics and Mechanics of Cometary Materials, Paris 1989Google Scholar
  44. Morabito LA, Synnott SP, Kupferman PN, Collins SA (1979) Discovery of currently active extraterrestrial volcanism. Science 204:972CrossRefPubMedGoogle Scholar
  45. Murray JB, Balme MR, Muller JP, Kim JR, Morley J, Neukum G, HRSC Co-Investigator Team (2006) Preliminary Observations on New Images of the Elysium Frozen Sea Deposits from HRSC Mars Express, 37th Annual Lunar and Planetary Science Conference, abstract no. 2293Google Scholar
  46. Nadis S (1999) Moves are afoot to probe the lake trapped beneath Antarctic ice. Nature 401:203CrossRefGoogle Scholar
  47. National Academy of Sciences (2000) Preventing the forward contamination of Europa, Report; Task Group on the Forward Contamination of Europa, Space Studies Board, ISBN NI000231Google Scholar
  48. O’Brian DP, Geissler P, Greenberg R (2000) Tidal heat in Europa. Ice thickness and the plausibility of melt through. Bull Am Astron Soc 32:1066Google Scholar
  49. Ojakangas GW, Stevenson DJ (1989) Thermal state of an ice shell on Europa. Icarus 81:220–241CrossRefGoogle Scholar
  50. Owen T (2005) Planetary science: Huygens rediscovers Titan. Nature 438:756–757PubMedCrossRefGoogle Scholar
  51. Paige DA, September (1992) The Mars Polar Pathfinder/Proposal for a Discovery Mission. Discovery Program Workshop, Concept #83Google Scholar
  52. Pappalardo RT, Head JW, Greeley R, Sullivan RJ, Pilcher C, Schuberts G, Moore WB, Carr MH, Moore JM, Belton MJ, Goldsby DL (1998) Geological evidence for solid state convection in Europa’s ice shell. Nature 391:365–368PubMedCrossRefGoogle Scholar
  53. Peale SJ, Cassen P, Reynolds RT (1979) Melting of Io by tidal dissipation. Science 203:892–894CrossRefPubMedGoogle Scholar
  54. Philbert K (1962) Une methode pour mesurer les temperatures a l’interieur d’un inlandsis. Comptes Rendus Hebdomadaires des Seances de l’ Academie des Sciences, Paris, Tom 254(22):3881–3883Google Scholar
  55. Pilcher C, Ridgeway S, McCord T (1972) Galilean satellites: Identification of water frost. Science 178:1087–1089CrossRefPubMedGoogle Scholar
  56. Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull A (eds) Microbial diversity and bioprospecting Chap 13. ASM Press, Washington, DC, pp 130–145Google Scholar
  57. Randolph RO, Race MS, McKay CP (1997) Reconsidering the theological and ethical implications of extraterrestrial life. CTNS Bull 17(3):1–8Google Scholar
  58. Richter L, Coste P, Gromov VV, Kochan H, Pinna S, Richter HE (2001) Development of the “planetary underground tool” subsurface soil sampler for the mars express “Beagle 2” lander. Adv Space Res 28(8):1225–1230CrossRefGoogle Scholar
  59. Richter L, Coste P, Gromov VV, Grzesik A (2004) The mole with sampling mechanism (MSM) – Technology development and payload of beagle 2 mars lander. Proceedings, 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA 2004), Noordwijk, The Netherlands, November 2–4Google Scholar
  60. Reynolds RT, Squyres SW, Colburn DS, McKay CP (1983) On the habitability of Europa. Icarus 56:246–254CrossRefGoogle Scholar
  61. Ross M, Schubert G (1987) Tidal heating in an internal ocean model of Europa. Nature 325:133–144CrossRefGoogle Scholar
  62. Rummel JD (2001) Planetary exploration in the time of astrobiology: protecting against biological contamination. PNAS 98(5):2128–2131PubMedCrossRefGoogle Scholar
  63. Rummel JD, Stabekis PD, DeVicenzi DL, Barengoltz JB (2002) COSPAR’s planetary protection policy: a consolidated draft. Adv Space Res 30:1567–1571CrossRefGoogle Scholar
  64. Sas-Jaworsky A, Bell S (1996) Innovative applications stimulate coiled tubing development. World Oil 217(6):61–69Google Scholar
  65. Shreve RL (1962) Theory of performance of isothermal solid-nose hot-points boring in temperate ice. J Glaciol 4(32):151–160Google Scholar
  66. Siegert MJ (2000) Antarctic subglacial lakes. Earth Sci Rev 50:29–50CrossRefGoogle Scholar
  67. Siegert MJ, Ellis-Evans J, Tranter M, Mayer C, Petit JP, Salamatin A, Priscu JC (2001) Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414:603–609PubMedCrossRefGoogle Scholar
  68. Siegert MJ, Carter S, Tabacco I, Popov S, Blankenship DD (2005) A revised inventory of Antarctic subglacial lakes. Antarctic Sci 17:453–460CrossRefGoogle Scholar
  69. Simonsen LC, Nealy JE (1993) Mars surface radiation exposure for solar maximum conditions and 1989 Solar proton events, NASA Technical Paper 3300Google Scholar
  70. Spohn T, Schubert G (2003) Oceans in the Galilean Satellites of Jupiter?. Icarus 161:456–467CrossRefGoogle Scholar
  71. Squyres SW, Reynolds RT, Cassen PM, Peale SJ (1983) Liquid water and active resurfacing on Europa. Nature 301:225–226CrossRefGoogle Scholar
  72. Treffer M, Kömle NI, Kargl G, Kaufmann E, Ulamec S, Biele J, Ivanov A, Funke O (2006) Preliminary studies concerning subsurface probes for exploration of icy planetary bodies. Accepted by Planetary and Space ScienceGoogle Scholar
  73. Tüg H (2003) Rechnergesteuerte Schmelzsonde zur Ermittlung unterschiedlicher Messparameter im Eisbereich, Patentschrift DE 101 64 648 C 1, Deutsches Patentamt, 6.2.2003Google Scholar
  74. Ulamec S, Biele J, Drescher J and Ivanov A (2005) A Melting Probe with applications on Mars, Europa and Antarctica; 56th International Astronautical Congress, IAC-A1.7.08, Fukuoka/JapanGoogle Scholar
  75. Xie H, Zhu M, Guan H, Smith RK (2006) Isolated Water Ice in an Unnamed Crater Away From the Residual North Polar Cap of Mars: the Only One?, 37nd Annual Lunar and Planetary Science Conference, abstract no. 1764Google Scholar
  76. Zarnecki JC et al (2005) A soft solid surface on Titan as revealed by the Huygens Surface Science Package. Nature 438:792–795PubMedCrossRefGoogle Scholar
  77. Zimmerman W, Bonitz R, Feldman J (2001) Cryobot: an ice penetrating robotic vehicle for Mars and Europa. 2001 IEEE Aerospace Conference, Big Sky, MT, 311–323Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Stephan Ulamec
    • 1
  • Jens Biele
    • 1
  • Oliver Funke
    • 1
  • Marc Engelhardt
    • 1
  1. 1.German Aerospace Center (DLR)Institute for Space SimulationLinder HöheGermany

Personalised recommendations