A User Interface for Resource Management in a Mobile Environment

  • Badr Benmammar
  • Zeina JRAD
  • Francine Krief


This paper describes a user interface for QoS management in mobile IP networks. The paper context is built in conformance with the generic signaling environment, which is standardized by the NSIS IETF working group. In this work, we investigate the use of some techniques of the AI (Artificial Intelligence) domain to implement a user interface called NIA (Negotiation Individual Assistant) in order to determine the QoS profile and negotiate the QoS parameters in the new domain after the handover. Therefore, we use the connectionist learning in the management of the negotiation profiles and the agent technology to help the user to choose the best service provider, dynamically negotiate the QoS on the user’s behalf, follow the user’s behaviour to be able to anticipate the negotiation and manage the re-negotiation. The resource management, presented in this work, provides to mobile terminals the required QoS based on user’s mobility and QoS profile. This QoS profile is determined by the NIA


Mobile Terminal Mobile Environment Resource Reservation Mobility Anchor Point Advance Reservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    QoSforum, “QoS protocols & architectures”, White Paper, July 1999.Google Scholar
  2. 2.
    Yavatkar R., D. Pendarakis, R. Guerin, “A Framework for Policy Based Admission Control”, RFC 2753, January 2000.Google Scholar
  3. 3.
    D. Goderis and al., Service Level Specification Semantics and Parameters, draft-tequila-sls-02.txt, Internet draft, January, 2002.Google Scholar
  4. 4.
    S. Van den Bosch, G. Karagiannis, A. McDonald, NSLP for Quality-of-Service signaling, <draft-ietf-nsis-qos-nslp- 10.txt>, March, 2006.Google Scholar
  5. 5.
    A. K. Talukdar, B. R. Badrinath, A. Acharya, MRSVP: A resource reservation protocol for an integrated services network with mobile hosts, ACM Journal of Wireless Networks, vol. 7, 2001.Google Scholar
  6. 6.
    K. Min-Sun, S. Young-Joo, K. Young-Jae, C. Young, A Resource Reservation Protocol in Wireless Mobile Networks. ICPP Workshops, Valencia, Spain September 03–07, 2001.Google Scholar
  7. 7.
    D. Ferrari, A. Gupta, G. Ventre, Distributed Advance Reservation of Real-Time Connections. Proceedings of the 5th International Workshop on Network and Operating System Support for Digital Audio and Video. P.16–27. April 19–21, 1995.Google Scholar
  8. 8.
    H. Schulzrinne, R. Hancock, GIST: General Internet Signaling Transport, draft-ietf-nsis-ntlp-09, February, 2006.Google Scholar
  9. 9.
    K. Benabdeslem, Approches Connexionnistes pour la visualisation et la classification des donnèes issues d’usages de l’Internet, thesis in computer science, LIPN, University of Paris13, France, December, 2003.Google Scholar
  10. 10.
    T. Kohonen and S. Kaski and H. Lappalainen, Self-Organized Formation of Various Invariant-Feature Filters in the Adaptive-Subspace SOM, pages 1321–1344, Neural Computation, 1997.Google Scholar
  11. 11.
    Y. Bennani, Rèseaux de neurones artificiels, Chapter in Encyclopedie d’Informatique et Science de l’information, Edition Vuibert, 2005.Google Scholar
  12. 12.
    Davies, D., L., Bouldin, D., W., A Cluster Separation Measure, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2): pp. 224–227. (1979).Google Scholar
  13. 13.
    Juha, A. , Esa, A., Clustering of the Self-Organizing Map, IEEE Tractions On Neural Networks volume 11, nˆ 3, (2000).Google Scholar
  14. 14.
    E. Alhoniemi and J. Himberg and J. Parhankangas and J. Vesanto, SOM Toolbox, 2000, Copyright (C), Scholar
  15. 15.
    Projet Arcade, Architecture de Control Adaptative des Environments IP, Web Site:, 2002.Google Scholar
  16. 16.
    Projet IpSig, Signalisation gènèrique du monde IP, projets/res_02_85.htm, 2004.Google Scholar
  17. 17.
    Zeina JRAD, Thesis report, Apports des techniques de l’Intelligence Artificielle dans la nègociation dynamique de la qualitè de service : Proposition d’un assistant á l’utilisateur dans les rèseaux IP de nouvelle gènèration, LIPN, University of Paris 13, France, May 2006.Google Scholar
  18. 18.
    Z. Jrad., B. Benmammar, J. Correa, F. Krief , N. Mbarek, A user assistant for QoS negotiation in a dynamic environment using agent technology. Second IFIP International Conference on Wireless and Optical Communications Networks WOCN 2005. Dubai, United Arab Emirates UAE, March 2005.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Badr Benmammar
    • 1
  • Zeina JRAD
    • 2
  • Francine Krief
    • 3
  1. 1.GET / Tèlècom Paris CNRS LTCI75634 Paris Cedex 13
  2. 2.INRIA Rocquencourt, Domaine de Voluceau78153 Le ChesnayFrance
  3. 3.LaBRI LaboratoryBordeaux1 University33400 TalenceFrance

Personalised recommendations