Image Processing for the Measurement of Flow Rate of Silo Discharge

  • Cédric Degouet
  • Blaise Nsom
  • Eric Lolive
  • André Grohens
Conference paper

Abstract

In this work, silo discharge was viewed as a complex fluid flow, in order to perfect a new technique for the measurement of flow rate. Flow rate was investigated using a non intrusive method measuring the evolution of the free surface profile during the discharge flow. This method consisted of recording via a CCD sensor, the evolution of the free surface by laser planes, and then obtaining by processing the free surface position and shape over time.

Keywords

Porosity Europe Tungsten Lime Pyramid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Reimbert, and M. Reimbert. Silos, eds. eyrolles, Paris (in French), 1956.Google Scholar
  2. [2]
    A. Reimbert, and M. Reimbert. Silos, eds eyrolles, Paris (in French), 1979.Google Scholar
  3. [3]
    Jenike, A.W. (1964). Storage and flow of solids. Bull. n°123, Eng. Exp. Station, Univ. Utah, Salt lake City.Google Scholar
  4. [4]
    Brown, C.J. and Nielsen, J. (1998). “Silos. Fundamentals of theory, behaviour and design”, Eds. E & FN SPON, London.Google Scholar
  5. [5]
    Teunou, E. and Fitzpatrick, J.J. (2000). Effect of storage time and consolidation on food powder flowability, J. Food Eng., 43, 97-101.CrossRefGoogle Scholar
  6. [6]
    Neddermann, R.M. The measurement of the velocity profile in a granular material discharging from a conical hopper, Chemical Engineering Science, 43 (7), 1988, pp. 1507–1516.CrossRefGoogle Scholar
  7. [7]
    Tüzün, U., Houlsby, G. T., Nedderman, R. M. and Savage, S. B. The flow of granular materials ii, velocity distributions in slow flow, Chemical Engineering Science, 37 (12), 1691–1709.Google Scholar
  8. [8]
    Beverloo, W. A., Leniger, H. A. and Van de Velde, J. (1961). The flow of granular solids through orifices, Chemical Engineering Science, 15, 260–269.CrossRefGoogle Scholar
  9. [9]
    Bideau, D. and Ammi, M. (2001). Ecoulements gravitaires: sabliers et silos, in “ Mécanique des milieux granulaires ”, pp. 75-114, Eds. Jack Lanier, Hermes Science europe Ltd, Paris, (in French).Google Scholar
  10. [10]
    Rose, H.F. and Tanaka, T. (1959). “Rate of discharge of granular materials from bins and hoppers”, The Engineer, London.Google Scholar
  11. [11]
    Degouet, C., Nsom, B., Lolive, E. and Grohens, A. (2006). Physical and mechanical characterization of soya, colza and rye seeds, Accepted Appl. Rheol. Google Scholar
  12. [12]
    Nielsen, J. and Askegaard, V. (1977). Scale errors in model tests on granular media with special reference to silo models, Powder Technology, 16, 123-130.CrossRefGoogle Scholar
  13. [13]
    C. Degouet. Caractérisation de matériaux granulaires et de leurs écoulements dans les silos verticaux, Ph. D. Thesis, Brest, France, 2005 (in French). Google Scholar
  14. [14]
    D. A. Steingart and J. W. Evans. “Measurements of granular flows in two-dimensional hoppers by particle image velocimetry. part i: experimental method and results”, Chemical Engineering Science, 60, pp. 1043–1051, 2005.CrossRefGoogle Scholar
  15. [15]
    J. Munch-Andersen and J. Nielsen “Size effects in slender grain silos”, The International Journal of Storing and Handling of Bulk Materials, 6(5), pp. 885-889, 1986.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Cédric Degouet
    • 1
  • Blaise Nsom
    • 1
  • Eric Lolive
    • 1
  • André Grohens
    • 1
  1. 1.Université de Bretagne OccidentaleLIME / IUT de Brest. BP 93169Rue de Kergoat. 29231France

Personalised recommendations