Walking speed and area utilization of red king crab (Paralithodes camtschaticus) introduced to the Barents Sea coastal ecosystem

  • Terje Jørgensen
  • Svein Løkkeborg
  • Anders Fernö
  • Marianne Hufthammer
Fish Telemetry
Part of the Developments in Hydrobiology 195 book series (DIHY, volume 195)


The red king crab (Paralithodes camtschaticus) was introduced in the Barents Sea in the 1960s and soon established a viable population. Proper management and exploitation of the Barents Sea king crab stock require better understanding of the spatial dynamics at different scales. This study examines the small-scale movement patterns of seven adult male crabs tracked for a period of up to one month from mid July to mid August at 150 m depth in a semi-enclosed fjord on the Russo-Norwegian border. The crabs were tagged with acoustic transmitters and their movements monitored with an acoustic positioning system. Low walking speeds (<0.01 m s−1) were most frequent but the crabs could move at a maximum speed of 0.15 m s−1 and walk an actual distance of up to 270 m over a period of one hour. However, the crabs usually moved within a relatively restricted area with mean hourly longest rectilinear distance varying from 26 to 64 m. The crabs alternated between periods of low and high activity, which could reflect feeding in and movements between food patches. The lack of a diel activity rhythm may be due to high light levels during the polar summer night, or a chemically mediated food search strategy.


Red king crab Telemetry Walking speed Area utilization Barents Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ache, B. W., Z. M. Fuzessery & W. E. S. Carr, 1976. Antennular chemosensitivity in the spiny lobster, Panulirus argus: comparative tests of high and low molecular weight stimulants. Biology Bulletin 151: 273–282.CrossRefGoogle Scholar
  2. Atkinson, R. J. A., 1974. The activity rhythm of Goneplax rhomboids (L.). Marine Behaviour and Physiology 2: 325–335.Google Scholar
  3. Bjordal, Å., 1986. The behaviour of Norway lobster towards baited creels and size selectivity of creels and trawls. Fiskeridirektoratets Skrifter Serie Havundersøkelser 18: 131–137.Google Scholar
  4. Box, G. E. P., G. M. Jenkins & G. C. Reinsel, 1994. Time Series Analysis: Forecasting and Control, 3rd edn. Holden-Day.Google Scholar
  5. Chatterton, T. D. & B. G. Williams, 1994. Activity patterns of the New Zealand cancrid crab Cancer novaezelandiae (Jacquirot) in the field and laboratory. Journal of Experimental Marine Biology and Ecology 178: 261–274.CrossRefGoogle Scholar
  6. Fernö, A. & S. Olsen, 1994. Marine fish behaviour in capture and abundance estimation, Fishing News Books, 221 pp.Google Scholar
  7. Fuzessery, Z. M. & J. J. Childress, 1975. Comparative chemosensitivity to amino acids and their role in the feeding activity of bathypelagic and littoral crustaceans. Biology Bulletin 149: 522–538.CrossRefGoogle Scholar
  8. Gerasimova, O. V., 1997. Analysis of king crab (Paralithodes camtschatica) trophic links in the Barents Sea. International Council for the Exploration of the Sea Council Meeting 1997/GG:3.Google Scholar
  9. Godøy, H., D. Furevik & S. Løkkeborg, 2003a. Reduced bycatch of red king crab (Paralithodes camtschaticus) in the gillnet fishery for cod (Gadus morhua) in northern Norway. Fisheries Research 62: 377–384.CrossRefGoogle Scholar
  10. Godøy, H., D. Furevik & S. Stansen, 2003b. Unaccounted mortality of red king crab (Paralithodes camtschaticus) in deliberately lost pots off Northern Norway. Fisheries Research 64: 171–177.CrossRefGoogle Scholar
  11. González-Gurriarán, E. & J. Freire, 1994. Movement patterns and habitat utilization in the spider crab Maja squinado (Herbst) (Decapoda, Majidae) measured by ultrasonic telemetry. Journal of Experimental Marine Biology and Ecology 184: 269–291.CrossRefGoogle Scholar
  12. Hazlett, B. A., 1968. Effects of crowing on agonistic behavior of hermit crab Pagurus bernhardus. Ecology 49: 573–575.CrossRefGoogle Scholar
  13. Hill, B. J., 1976. Natural food, foregut clearance rate and activity of the crab Scylla serrata. Marine Biology 34: 109–116.CrossRefGoogle Scholar
  14. Hill, B. J., 1978. Activity, track and speed of movement of the crab Scylla serrata in an estuary. Marine Biology 47: 135–141.CrossRefGoogle Scholar
  15. Hines, A. H., T. G. Wolcott, E. González-Gurriarán, J. L. González-Escalante & J. Freire, 1995. Movement patterns and migrations in crabs: telemetry of juvenile and adult behaviour in Callinectes sapidus and Maja squinado. Journal of the Marine Biological Association of the United Kingdom 75: 27–42.Google Scholar
  16. Jammalamadaka, S. Rao & A. SenGupta, 2001. Topics in Circular Statistics. Series on Multivariate Analysis, 5. World Scientific Press, Singapore 322 pp.Google Scholar
  17. Jernakoff, P., 1987. Foraging patterns of juvenile western rock lobster Panulirus Cygnus George. Journal of Experimental Marine Biology and Ecology 113: 125–144.CrossRefGoogle Scholar
  18. Løkkeborg, S., 1998. Feeding behaviour of cod, Gadus morhua: Activity rhythm and chemically mediated food search. Animal Behaviour 56: 371–378.PubMedCrossRefGoogle Scholar
  19. Løkkeborg, S. & A. Fernö, 1999. Activity pattern and food search behaviour in cod, Gadus morhua. Environmental Biology of Fishes 54: 345–353.CrossRefGoogle Scholar
  20. Løkkeborg, S, A. Fernö & T. Jørgensen, 2002. Effect of position-fixing interval on the estimated swimming speed and movement pattern on fish tracked with a stationary positioning system. Hydrobiologia 482: 259–264.CrossRefGoogle Scholar
  21. Moore, A. & I. Russell, 2000. Advances in Fish Telemetry. Proceedings of the Third Conference on Fish Telemetry in Europe, Held in Norwich, England, 20–25 June 1999. CEFAS, Lowestoft. 264 pp.Google Scholar
  22. Orlov, Y. I. & B. G. Ivanov, 1978. On the introduction of the Kamchatka king crab Paralithodes camtschatica (Decapoda: Anomura: Lithodidae) into the Barents Sea. Marine Biology 48: 373–375.CrossRefGoogle Scholar
  23. Rafter, E., E. M. Nilssen & J. H. Sundet, 1996. Stomach content, life history, maturation and morphometric parameters of red king crab, Paralithodes camschaticus, from Varangerfjord area, North Norway. International Council for the Exploration of the Sea Council Meeting 1996/K:10.Google Scholar
  24. Rebach, S., 1985. Rhytmicity under constant conditions in the rock crab, Cancer irrotatus. Bulletin of Marine Science 36: 454–466.Google Scholar
  25. Rittschof, D., 1992. Chemosensation in the daily life of crabs. American Zoologist 32: 363–369.Google Scholar
  26. Shirely, M. A. & T. G. Wolcott, 1991. A telemetry study of microhabitat selection by premolt and molting blue crabs, Callinectes sapidus (Rathbun), within a subestuary of the Pamlico River, North Carolina. Marine Behaviour and Physiology 19(2): 133–148.CrossRefGoogle Scholar
  27. Skajaa, K., A. Fernö, S. Løkkeborg & E. K. Haugland, 1998. Basic movement pattern and chemo-oriented search towards baited pots in edible crab (Cancer pagurus L.). Hydrobiologia 372: 143–153.CrossRefGoogle Scholar
  28. Stone, R. P., C. E. O’Clair & T. C. Shirley, 1992. Seasonal migration of female red king crabs in a southeast Alaskan estuary. Journal of Crustacean Biology 12(4): 546–560.CrossRefGoogle Scholar
  29. Tarverdieva, M. I., 1976. Feeding of the Kamchatka king crab Paralithodes camtschatica and tanner crabs Chionoecetes bairdi and Chionoecetes opilio in the southeastern part of the Bering Sea. Soviet Journal of Marine Biology 2: 34–39.Google Scholar
  30. Thorstad E. B., I. A. Fleming & T. F. Næsje, 2002. Aquatic telemetry. Proceedings of the Fourth Conference on Fish Telemetry in Europe. Hydrobiologia 483, 292 pp.Google Scholar
  31. Wolcott, T. G. & A. N. Hines, 1990. Ultrasonic telemetry of small-scale movements and microhabitat selection by molting blue crabs (Callinectes sapidus). Bulletin of Marine Science 46(1): 83–94.Google Scholar
  32. Zhou, S. & G. H. Kruse, 2000. Capture efficiency and size selectivity of two types of pots for red king crabs in the Bering Sea. Alaska Fisheries Research Bulletin 6: 94–103.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Terje Jørgensen
    • 1
  • Svein Løkkeborg
    • 1
  • Anders Fernö
    • 1
    • 2
  • Marianne Hufthammer
    • 3
  1. 1.Institute of Marine ResearchBergenNorway
  2. 2.Department of BiologyUniversity of BergenBergenNorway
  3. 3.Directorate of FisheriesBergenNorway

Personalised recommendations