On the influence of suspended sediment transport on the generation of offshore sand waves

  • Fenneke van der Meer
  • Suzanne J. M. H. Hulscher
  • Joris van den Berg
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 11)


Sand waves are bed-forms occurring in shallow seas. Although their characteristics are mainly affected by bed load transport, during rough weather suspended sediment transport can influence their characteristics. As a first step to model these influences, we added suspended sediment transport to a numerical 2DV model that was specifically developed for simulating sand waves. In this paper, results are presented for initial, small amplitude, sand waves. Incorporating suspended sediment transport increases the growth rate of sand waves significantly while their wave length is more robust. Furthermore, we found that the results are sensitive to flow conditions, as expected, and sediment diffusivity, which needs a more advanced description.


Sediment Transport Suspended Sediment Sediment Concentration Tidal Cycle Eddy Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Besio, G., Blondeaux, P., and Frisina, P. (2003). A note on tidally generated sand waves. J. Fluid Dynamics, 485, 171–190Google Scholar
  2. [2]
    Blondeaux, P. and Vittori, G. (2005a). Flow and sediment transport induced by tide propagation: 1 the flat bottom case. J. Geoph. Res.-Oceans, 110 (C07020, doi:10.1029/2004JC002532)Google Scholar
  3. [3]
    Blondeaux, P. and Vittori, G. (2005b). Flow and sediment transport induces by tide propagation:2 the wavy bottom case. J. Geoph. Res.-Oceans, 110 (C08003, doi:10.1029/2004JC002545)Google Scholar
  4. [4]
    Buijsman, M. C. and Ridderinkhof, H. (2006). The relation between currents and seasonal sand wave variability as observed with ferry-mounted adcp. In: PECS 2006, Astoria, OR-USAGoogle Scholar
  5. [5]
    Garcia, M. and Parker, G. (1991). Entrainment of bed sediment into suspension. J. Hydraulic Engg, 117, 414–435Google Scholar
  6. [6]
    Grasmeijer, B. T., Dolphin, T., Vincent, C., and Kleinhans, M. G. (2005). Suspended sand concentrations and transports in tidal flow with and without waves. In: Sandpit, Sand transport and morphology of offshore sand mining pits, van Rijn, L. C., Soulsby, R. L., Hoekstra, P., and Davies, A. G. (eds.), U1–U13. Aqua PublicationsGoogle Scholar
  7. [7]
    Green, M. O., Vincent, C. E., McCave, I. N., Dickson, R. R., Rees, J. M., and Pearson, N. D. (1995). Storm sediment transport: observations from the British North Sea shelf. Continental Shelf Res., 15 (8), 889–912CrossRefGoogle Scholar
  8. [8]
    Hulscher, S. J. M. H. (1996). Tidal-induced large-scale regular bed form patterns in a three-dimensional shallow water model. J. Geoph. Res., 101, 727–744CrossRefGoogle Scholar
  9. [9]
    Komarova, N. L. and Hulscher, S. J. M. H. (2000). Linear instability mechanisms for sand wave formation. J. Fluid Mech., 413, 219–246CrossRefGoogle Scholar
  10. [10]
    Lee, G. and Dade, W. B. (2004). Examination of reference concentration under waves and currents on the inner shelf. J. Geoph. Res., 109 (C02021, doi:10.1029/2002JC001707)Google Scholar
  11. [11]
    McCave, I. N. (1971). Sand waves in the North Sea off the coast of Holland. Marine Geology, 10(3), 199–225CrossRefGoogle Scholar
  12. [12]
    Nemeth, A. A., Hulscher, S. J. M. H., and Van Damme, R. M. J. (2006). Simulating offshore sand waves. Coastal Engineering, 53, 265–275CrossRefGoogle Scholar
  13. [13]
    Passchier, S. and Kleinhans, M. G. (2005). Observations of sand waves, megaripples, and hummocks in the Dutch coastal area and their relation to currents and combined flow conditions. J. Geoph. Res.-Earth Surface, 110 (F04S15, doi:10.1029/2004JF000215)Google Scholar
  14. [14]
    Smith, J. D. and McLean, S. R. (1977). Spatially averaged flow over a wavy surface. J. Geoph. Res., 12, 1735–1746Google Scholar
  15. [15]
    Van den Berg, J. and van Damme, D. (2006). Sand wave simulations on large domains. In: River, Coastal and Estuarine Morphodynamics: RCEM2005, Parker and Garcia (eds.)Google Scholar
  16. [16]
    Van der Veen, H. H., Hulscher, S. J. M. H., and Knaapen, M. A. F. (2005). Grain size dependency in the occurence of sand waves. Ocean Dynamics, (DOI 10.1007/s10236-005-0049-7)Google Scholar
  17. [17]
    Van Rijn, L. C. (1984). Sediment transport, part ii: Suspended load transport. J. Hydraulic Engineering, 11, 1613–1641CrossRefGoogle Scholar
  18. [18]
    Van Rijn, L. C. (1993). Principles of sediment transport in rivers, estuaries and coastal seas, vol. I11. Aqua Publications, AmsterdamGoogle Scholar
  19. [19]
    Van Rijn, L. C. and Walstra, D. J. R. (2003). Modelling of sand transport in DELFT3D-ONLINE. WL—Delft Hydraulics, DelftGoogle Scholar
  20. [20]
    Wientjes, I. G. M. (2006). Grain size sorting over sand waves. CE&M research report 2006R-004/WEM-005Google Scholar
  21. [21]
    Zyserman, J. A. and Fredsoe, J. (1994). Data-analysis of bed concentration of suspended sediment. J. Hydraulic Engg, 120, 1021–1042.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Fenneke van der Meer
    • 1
  • Suzanne J. M. H. Hulscher
    • 1
  • Joris van den Berg
    • 2
  1. 1.Water Engineering and ManagementUniversity of TwenteEnschedeThe Netherlands
  2. 2.Numerical Analysis and Computational MechanicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations