Advertisement

Laboratory model of two-dimensional polar beta-plane turbulence

  • G. F. Carnevale
  • A. Cenedese
  • S. Espa
  • M. Mariani
Part of the ERCOFTAC Series book series (ERCO, volume 11)

Abstract

The evolution of a two-dimensional turbulent decaying flow is experimentally analyzed in a rotating system considering the effect of the change of the Coriolis force with latitude. The flow is generated using an electro-magnetic (EM) cell, i.e., by electro-magnetically forcing a thin layer of a saline solution, in a rotating reference frame. A Feature Tracking (FT) technique is used to measure the flow field allowing the reconstruction of high resolution velocity and vorticity fields. In agreement with theoretical prediction and previous experiments, results corresponding to high values of the beta parameter show a preferential transfer of energy towards zonal modes and the consequent organization of a weak anticyclonic circulation in the polar zone. Moreover, the analysis of the one-dimensional energy spectra shows a scaling steeper than Kolmogorov’s law and a peak near the Rhines scale indicating a soft barrier of the energy transfer towards low wave-numbers.

Keywords

Particle Image Velocimetry Potential Vorticity Feature Tracking Particle Tracking Velocimetry Inverse Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Cheklov, S.A. Orszag, S. Sukoriansky, B. Galperin, OI. Staroselsky, The effect of small scale forcing on large-scale structures in two-dimensional flows, Physica D 98, 321 (1995)CrossRefGoogle Scholar
  2. [2]
    R.H. Kraichnan, Inertial ranges in two-dimesional turbulence, Phys. Fluids 10, 1417 (1967)CrossRefGoogle Scholar
  3. [3]
    R.H. Kraichnan, D. Montgomery, Two-dimensional turbulence, Rep. Prog. Phys. 43, 547 (1980)CrossRefGoogle Scholar
  4. [4]
    H.P. Huang, B. Galperin, S. Sukoriansky, Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere, Phys. Fluids 13, 225 (2001)CrossRefGoogle Scholar
  5. [5]
    P.B. Rhines, Waves and turbulence on a beta plane, JFM 69, 417 (1975)Google Scholar
  6. [6]
    P.B. Rhines, Jets 4, 313 (1994)Google Scholar
  7. [7]
    B. Galperin, S. Sukoriansky, H.P. Huang, Universal n −5 spectrum of zonal flows on giant planets, Phys Fluids 13, 1545 (2001)CrossRefGoogle Scholar
  8. [8]
    J. Pedlosky, Geophysical Fluid Dynamics, Springer, (1979)Google Scholar
  9. [9]
    G.K. Vallis, M.E. Maltrud, Generation of mean flows and jets on a beta plane and over topography, J. Phys. Oceanogr. 23, 1346 (1993)CrossRefGoogle Scholar
  10. [10]
    S. Yoden, Yamada M., A numerical experiment of decaying turbulence on a rotating sphere, J. Atmos. Sci, 50, 631 (1993)CrossRefGoogle Scholar
  11. [11]
    J. Y.-K. Cho, L. M. Polvani, The emergence of jets and vortices in freely evolving, shallow-water turbulence on sphere, Phys. Fl, 8, 1531 (1996)CrossRefGoogle Scholar
  12. [12]
    S. Danilov, and D. Gurarie, Scaling, spectra and zonal jets in beta-plane turbulence, Phys. Fluids 16, 2592 (2004)CrossRefGoogle Scholar
  13. [13]
    J. Aubret, S. Jung, H.L. Swinney, Observation of zonal flows created by potential vorticity mixing in a rotating fluid, Geophys. Research Letters 29, 1876 (2002)CrossRefGoogle Scholar
  14. [14]
    Y. D. Afanasyev, J. Wells, Quasi-2d turbulence on the polar beta-plane: laboratory experiments, Geophys. Astro. Fl. Dyn., 99-1, 1 (2005)CrossRefGoogle Scholar
  15. [15]
    G. Boffetta, A. Cenedese, S. Espa, S. Musacchio, Effects of friction on 2D turbulence: an experimental study, Europhys. Letters 71, 590 (2005)CrossRefGoogle Scholar
  16. [16]
    M.C. Jullien, J. Paret J., P. Tabeling, Richardson pair dispersion in two dimensional turbulence, Phys. Rew. Lett. 82, 2872 (1999)CrossRefGoogle Scholar
  17. [17]
    M. Miozzi, Particle Image Velocimetry using Feature Tracking and Delauny Tessellation, Proceedings of the 12th International Symposium “Application of laser techniques to fluid mechanics”, Lisbon, (2004)Google Scholar
  18. [18]
    A. Cenedese, M. Moroni, Comparison among Feature tracking and more consolidated Velocimetry image analysis techniques in a fully developed turbulent channel flow, Meas. Sci. Technol., 16, 2307 (2005)CrossRefGoogle Scholar
  19. [19]
    G. F. Carnevale, R. C. Kloosterziel, J. G. F. Van Heijst, Propagation of barotropic vortices over topography in rotating tank, J. Fluid Mech., 223, 119 (1991)CrossRefGoogle Scholar
  20. [20]
    P. Tabeling, Two dimensional turbulence: a physicist approach, Phys. Reports 1, 362 (2002)Google Scholar
  21. [21]
    B.D. Lucas, T. Kanade, An iterative image registration technique with an application to stereo vision, Proceedings of Imaging Understanding Workshop, 121 (1981)Google Scholar
  22. [22]
    J. Shi, C. Tomasi, Good features to track, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (1994)Google Scholar
  23. [23]
    A. Cenedese, S. Espa, M. Miozzi, Experimental study of two-dimensional turbulence using Feature Tracking, Proc. 12th International Symposium “Application of laser techniques to fluid mechanics”, Lisbon, (2004)Google Scholar
  24. [24]
    Carnevale, G.F. 2006 Mathematical and Physical Theory of Turbulence John Cannon and Sen Shivamoggi (Eds.) Taylor and FrancisGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • G. F. Carnevale
    • 1
  • A. Cenedese
    • 2
  • S. Espa
    • 2
  • M. Mariani
    • 2
  1. 1.Scripps Institution of OceanographyUniversity California San DiegoLa JollaUSA
  2. 2.Dipartimento di Idraulica, Trasporti e StradeUnivrsita di Roma ‘La Sapienza’RomeItaly

Personalised recommendations