Skip to main content

Lagrangian multi-particle statistics

  • Conference paper
Particle-Laden Flow

Part of the book series: ERCOFTAC Series ((ERCO,volume 11))

  • 1519 Accesses

Abstract

Combined measurements of the Lagrangian evolution of particle constellations and the coarse grained velocity derivative tensor \( \partial \tilde u_i /\partial x_j \) are presented. The data is obtained from three dimensional particle tracking measurements in a quasi isotropic turbulent flow at intermediate Reynolds number. Particle constellations are followed for as long as one integral time and for several Batchelor times. We suggest a method to obtain quantitatively accurate \( \partial \tilde u_i /\partial x_j \) from velocity measurements at discrete points. We obtain good scaling with \( t_* = \sqrt {2r^2 /15S_r (r)} \) for filtered strain and vorticity and present filtered R-Q invariant maps with the typical ‘tear drop’ shape that is known from velocity gradients at viscous scales. Lagrangian result are given for the growth of particle pairs, triangles and tetrahedra. We find that their principal axes are preferentially oriented with the eigenframe of coarse grained strain, just like constellations with infinitesimal separations are known to do. The compensated separation rate is found to be close to its viscous counterpart as \( 1/2{\text{ }}(dr^2 /dt)/r^2 \cdot t_* /\sqrt 2 \approx 0.11 - 0.14 \). It appears that the contribution from the coarse grained strain field, \( r_i r_j \tilde s_{ij} \) filtered at scale Δ = r, is responsible only for roughly 50% of the separation rate. The rest stems from contributions with scales Δ < r.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brian Sawford. Turbulent relative dispersion. Ann. Rev. Fluid Mech., 33:289–317, 2001.

    Article  Google Scholar 

  2. Jacob Berg, Beat Lüthi, Jakob Mann, and Søren Ott. An experimental investigation: backwards and forwards relative dispersion in turbulent flow. Phys. Rev. E, 74(1):016304, 2006.

    Article  Google Scholar 

  3. Beat Lüthi, Jacob Berg, Søren Ott, and Jakob Mann. Self similar two particle separation model. 1st revision, Physics of Fluids, 2006.

    Google Scholar 

  4. Laurent Mydlarski, Alain Pumir, Boris I. Shraiman, Eric D. Siggia, and Zellman Warhaft. Structures and multipoint correlators for turbulent advection: Predictions and experiments. Phys. Rev. Lett., 81(20):4373–4376, 1998.

    Article  Google Scholar 

  5. Misha Chertkov, Alain Pumir, and Boris I. Shraiman. Lagrangian tetrad dynamics and the phenomenology of turbulence. Physics of Fluids, 11(8):2394–2410, August 1999.

    Article  Google Scholar 

  6. Alain Pumir, Boris I. Shraiman, and Misha Chertkov. Geometry of Lagrangian dispersion in turbulence. Phys. Rev. Lett., 85(25):5324–5327, December 2000.

    Article  Google Scholar 

  7. A. Naso and A. Pumir. Scale dependence of the coarse-grained velocity derivative tensor structure in turbulence. Phys. Rev. E, 72:056318, 2005.

    Article  Google Scholar 

  8. L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte, and F. Toschi. Multiparticle dispersion in fully developed turbulence. Physics of Fluids, 17(11):111701, 1–4, 2005.

    Article  Google Scholar 

  9. A. Naso and A. Pumir. Scale dependence of the coarse-grained velocity derivative tensor: Influence of large-scale shear on small-scale turbulence. J. of Turbulence, 7(41):1–11, 2006.

    Article  Google Scholar 

  10. Vadim Borue and Steven A. Orzag. Local energy flux and subgrid-scale statistics in three-dimensional turbulence. J. Fluid Mech., 366:1–31, 1998.

    Article  Google Scholar 

  11. Fedderik van der Bos, Bo Tao, Charles Meneveau, and Joseph Katz. Effects of small-scale turbulent motions on the filtered velocity gradient tensor as deduced from holographic particle image velocimetry measurements. Physics of Fluids, 14(7):2456–2474, 2002.

    Article  Google Scholar 

  12. G. K. Batchelor. Diffusion in a field of homogeneous turbulence. II The relative motion of particles. Proc. Cambridge Phil. Soc., 48:345–363, 1952.

    Article  Google Scholar 

  13. Alain Pumir, Boris I. Shraiman, and Misha Chertkov. The Lagrangian view of energy transfer in turbulent flow. EuroPhys. Lett., 56(3):379–385, 2001.

    Article  Google Scholar 

  14. Beat Lüthi, Arkady Tsinober, and Wolfgang Kinzelbach. Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech., 528:87–118, 2005.

    Article  Google Scholar 

  15. T. Chang and G. Taterson. Application of image processing to the analysis of three-dimensional flow fields. Opt. Engng, 23:283–287, 1983.

    Google Scholar 

  16. R. Racca and J. Dewey. A method for automatic particle tracking in a three-dimensional flow field. Experiments in Fluids, 6:25–32, 1988.

    Article  Google Scholar 

  17. Marko Virant and Themistocles Dracos. 3D PTV and its application on Lagrangian motion. Meas. Sci. Technol., 8:1529–1552, 1997.

    Article  Google Scholar 

  18. Søren Ott and Jakob Mann. An experimental investigation of the relative diffusion of particle pairs in three dimensional turbulent flow. J. Fluid Mech., 422:207–223, 2000.

    Article  Google Scholar 

  19. A. La Porta, Greg A. Voth, Alice M. Crawford, Jim Alexander, and Eberhard Bodenschatz. Fluid particle accelerations in fully developed turbulence. Nature, 409:1016–1017, Feb. 2001.

    Article  Google Scholar 

  20. Mickaël Bourgoin, Nicholas T. Ouellette, Haitao Xu, Jacob Berg, and Eberhard Bodenschatz. Pair Dispersion in Turbulence. Science, 311:835–838, 2006.

    Article  Google Scholar 

  21. Michael S. Borgas and P.K. Yeung. Relative dispersion in isotropic turbulence. Part 2. A new stochastic model with Reynolds-number dependence. J. Fluid Mech., 503:125–160, 2004.

    Article  Google Scholar 

  22. A. Tsinober. An Informal Introduction to Turbulence. KluwerAcademic Publishers, 2001.

    Google Scholar 

  23. M. Kholmyansky, A. Tsinober, and S. Yorish. Velocity derivatives in the atmospheric surface layer at Re-lambda=104. Physics of Fluids, 13(1):311–314, 2001.

    Article  Google Scholar 

  24. B.J. Cantwell. Exact solution of a restricted euler equation for the velocity-gradient tensor. Physics of Fluids, 4(4):782–793, 1992.

    Article  Google Scholar 

  25. S. S. Girimaji and S. B. Pope. Material-element deformation in isotropic turbulence. J. Fluid Mech., 220:427–458, 1990.

    Article  Google Scholar 

  26. Michele Guala, Beat Lüthi, Alex Liberzon, Arkady Tsinober, and Wolfgang Kinzelbach. On the evolution of material lines and vorticity in homogeneous turbulence. J. Fluid Mech., 533:339–359, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Lüthi, B., Berg, J., Ott, S., Mann, J. (2007). Lagrangian multi-particle statistics. In: Geurts, B.J., Clercx, H., Uijttewaal, W. (eds) Particle-Laden Flow. ERCOFTAC Series, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6218-6_21

Download citation

Publish with us

Policies and ethics