Skip to main content

Numerical studies of viscous effects for particle fluxes to perfectly absorbing spherical surfaces in turbulent environments: biological applications

  • Conference paper
Particle-Laden Flow

Part of the book series: ERCOFTAC Series ((ERCO,volume 11))

  • 1508 Accesses

Abstract

The motion of point-particles is studied by numerical simulations. We analyze the turbulent particle fluxes to perfectly absorbing spheres, which are moving with the flow. Particular attention is given to the effect of viscosity for the case where the radius of the sphere is comparable to or smaller than the Kolmogorov length scale. By relatively simple model arguments, we arrive at analytical expressions which give a very good agreement with the observed scalings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batchelor, G. K. 1952, Diffusion in a field of homogeneous turbulence II. The relative motion of particles. Proc. Cambridge Philos. Soc. (London), 48, 345–362.

    Article  Google Scholar 

  2. Roberts, P. H. 1961, Analytical theory of turbulent diffusion. J. Fluid Mech., 11, 257–283.

    Article  Google Scholar 

  3. Sundby, S. and Fossum, P. 1990, Feeding conditions of arcto-norwegian cod larvae compared with the Rothschild-Osborn theory on small-scale turbulence and plankton contact rates. J. Plankton Res., 12, 1153–1162.

    Article  Google Scholar 

  4. Kiørboe, T. and Saiz, E. 1995, Planktivorous feeding in calm and turbulent environments, with emphasis on copepods. Mar. Ecol. Prog. Ser., 122, 135–145.

    Article  Google Scholar 

  5. Muelbert, J. H., Lewis, M. R. and Kelley, D. E. 1994, The importance of small-scale turbulence in the feeding of herring larvae. J. Plankton Res., 16, 927–944.

    Article  Google Scholar 

  6. Rothschild, B. J. and Osborn, T. R. 1988, Small-scale turbulence and plankton contact rates. J. Plankton Res., 10, 465–474.

    Article  Google Scholar 

  7. Osborn, T. 1996, The role of turbulent diffusion for copepods with feeding currents. J. Plankton Res., 18, 185–195.

    Article  Google Scholar 

  8. Mann, J., Ott, S., Pécseli, H. L., and Trulsen, J. 2005, Turbulent particle flux to a perfectly absorbing surface. J. Fluid Mech., 534, 1–21.

    Article  Google Scholar 

  9. Mann, J., Ott, S., Pécseli, H. L. and Trulsen, J. 2006, Laboratory studies of predator-prey encounters in turbulent environments: effects of changes in orientation and field of view. J. Plankton Res., 28, 509–522.

    Article  Google Scholar 

  10. Blaxter, J. H. S. and Staines, M. E. 1971, Food searching potential in marine fish larvae. In D. J. Crisp, editor, Proceedings of the 4th European Marine Biology Symposium, pages 467–485. Cambridge University Press.

    Google Scholar 

  11. Lewis, D. M. and Pedley, T. J. 2000, Planktonic contact rates in homogeneous isotropic turbulence: theoretical predictions and kinematic simulations. J. Theor. Biol., 205, 377–408.

    Article  Google Scholar 

  12. Hinze, J. O. 1975, Turbulence. McGraw-Hill, New York, 2 edition.

    Google Scholar 

  13. Mann, J. and Ott, S. 2006, Private communications: Recent laboratory experiments at the Risø National Laboratory has also demonstrated an r 2-variation for the viscous subrange of the velocity structure function.

    Google Scholar 

  14. Biferale, L., Boffetta, G., Celani, A., Lanotte, A., and Toschi, F. 2005, Particle trapping in three-dimensional fully developed turbulence. Phys. Fluids, 17, 021701.

    Article  Google Scholar 

  15. Boffetta, G., Pécseli, H. L., and Trulsen, J. 2006, Numerical studies of turbulent particle fluxes into perfectly absorbing spherical surfaces. J. Turbulence, 7(22), 1–16 doi:10.1080/14685240600573138.

    Article  Google Scholar 

  16. Lohse, D. and Müller-Groeling, A. 1996, Anisotropy and scaling corrections in turbulence. Phys. Rev. E, 54, 395–405.

    Article  Google Scholar 

  17. Dobler, W., Haugen, N. E. L., Yousef, T. A., and Brandenburg, A. 2003, Bottleneck effect in three-dimensional turbulence simulations. Phys. Rev. E, 68, 026304.

    Article  Google Scholar 

  18. Woodward, P. R., Porter, D. H., Edgar, B. K., Anderson, S., and Bassett, G. 1995, Parallel computation of turbulent fluid-flow. Comp. Appl. Math., 14, 97–105.

    Google Scholar 

  19. Chandrasekhar, S. 1957, The theory of turbulence. J. Madras Univ. B, 27, 251–275.

    Google Scholar 

  20. Buckingham, E. 1914, On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev., 4, 345–376.

    Article  Google Scholar 

  21. Davidson, P. A. Turbulence. An introduction for scientists and engineers. Cambridge University Press, UK, 2004.

    Google Scholar 

  22. Richardson, L. F. 1926, Atmospheric diffusion shown as a distance-neighbour graph. Proc. Roy. Soc. London, Ser. A, 6, 709–737.

    Article  Google Scholar 

  23. Pigolotti, S., Jensen, M. H., and Vulpiani, A. 2006, Absorbing processes in Richardson diffusion: Analytical results. Phys. Fluids, 18, 048104.

    Article  Google Scholar 

  24. Mann, K. H. and Lazier, J. R. N. 1996. Dynamics of Marine Ecosystems. Blackwell Science, UK, 2. edition.

    Google Scholar 

  25. Delichatsios, M. A. and Probstein, R. F. 1975, Coagulation in turbulent flow-theory and experiment. J. Colloid Interface Sci., 51, 394–405.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

PĂ©cseli, H.L., Trulsen, J. (2007). Numerical studies of viscous effects for particle fluxes to perfectly absorbing spherical surfaces in turbulent environments: biological applications. In: Geurts, B.J., Clercx, H., Uijttewaal, W. (eds) Particle-Laden Flow. ERCOFTAC Series, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6218-6_19

Download citation

Publish with us

Policies and ethics