Numerical studies of viscous effects for particle fluxes to perfectly absorbing spherical surfaces in turbulent environments: biological applications

  • H. L. Pécseli
  • J. Trulsen
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 11)


The motion of point-particles is studied by numerical simulations. We analyze the turbulent particle fluxes to perfectly absorbing spheres, which are moving with the flow. Particular attention is given to the effect of viscosity for the case where the radius of the sphere is comparable to or smaller than the Kolmogorov length scale. By relatively simple model arguments, we arrive at analytical expressions which give a very good agreement with the observed scalings.


Structure Function Spherical Surface Turbulent Environment Kolmogorov Scale Kolmogorov Length Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Batchelor, G. K. 1952, Diffusion in a field of homogeneous turbulence II. The relative motion of particles. Proc. Cambridge Philos. Soc. (London), 48, 345–362.CrossRefGoogle Scholar
  2. [2]
    Roberts, P. H. 1961, Analytical theory of turbulent diffusion. J. Fluid Mech., 11, 257–283.CrossRefGoogle Scholar
  3. [3]
    Sundby, S. and Fossum, P. 1990, Feeding conditions of arcto-norwegian cod larvae compared with the Rothschild-Osborn theory on small-scale turbulence and plankton contact rates. J. Plankton Res., 12, 1153–1162.CrossRefGoogle Scholar
  4. [4]
    Kiørboe, T. and Saiz, E. 1995, Planktivorous feeding in calm and turbulent environments, with emphasis on copepods. Mar. Ecol. Prog. Ser., 122, 135–145.CrossRefGoogle Scholar
  5. [5]
    Muelbert, J. H., Lewis, M. R. and Kelley, D. E. 1994, The importance of small-scale turbulence in the feeding of herring larvae. J. Plankton Res., 16, 927–944.CrossRefGoogle Scholar
  6. [6]
    Rothschild, B. J. and Osborn, T. R. 1988, Small-scale turbulence and plankton contact rates. J. Plankton Res., 10, 465–474.CrossRefGoogle Scholar
  7. [7]
    Osborn, T. 1996, The role of turbulent diffusion for copepods with feeding currents. J. Plankton Res., 18, 185–195.CrossRefGoogle Scholar
  8. [8]
    Mann, J., Ott, S., Pécseli, H. L., and Trulsen, J. 2005, Turbulent particle flux to a perfectly absorbing surface. J. Fluid Mech., 534, 1–21.CrossRefGoogle Scholar
  9. [9]
    Mann, J., Ott, S., Pécseli, H. L. and Trulsen, J. 2006, Laboratory studies of predator-prey encounters in turbulent environments: effects of changes in orientation and field of view. J. Plankton Res., 28, 509–522.CrossRefGoogle Scholar
  10. [10]
    Blaxter, J. H. S. and Staines, M. E. 1971, Food searching potential in marine fish larvae. In D. J. Crisp, editor, Proceedings of the 4th European Marine Biology Symposium, pages 467–485. Cambridge University Press.Google Scholar
  11. [11]
    Lewis, D. M. and Pedley, T. J. 2000, Planktonic contact rates in homogeneous isotropic turbulence: theoretical predictions and kinematic simulations. J. Theor. Biol., 205, 377–408.CrossRefGoogle Scholar
  12. [12]
    Hinze, J. O. 1975, Turbulence. McGraw-Hill, New York, 2 edition.Google Scholar
  13. [13]
    Mann, J. and Ott, S. 2006, Private communications: Recent laboratory experiments at the Risø National Laboratory has also demonstrated an r 2-variation for the viscous subrange of the velocity structure function.Google Scholar
  14. [14]
    Biferale, L., Boffetta, G., Celani, A., Lanotte, A., and Toschi, F. 2005, Particle trapping in three-dimensional fully developed turbulence. Phys. Fluids, 17, 021701.CrossRefGoogle Scholar
  15. [15]
    Boffetta, G., Pécseli, H. L., and Trulsen, J. 2006, Numerical studies of turbulent particle fluxes into perfectly absorbing spherical surfaces. J. Turbulence, 7(22), 1–16 doi:10.1080/14685240600573138.CrossRefGoogle Scholar
  16. [16]
    Lohse, D. and Müller-Groeling, A. 1996, Anisotropy and scaling corrections in turbulence. Phys. Rev. E, 54, 395–405.CrossRefGoogle Scholar
  17. [17]
    Dobler, W., Haugen, N. E. L., Yousef, T. A., and Brandenburg, A. 2003, Bottleneck effect in three-dimensional turbulence simulations. Phys. Rev. E, 68, 026304.CrossRefGoogle Scholar
  18. [18]
    Woodward, P. R., Porter, D. H., Edgar, B. K., Anderson, S., and Bassett, G. 1995, Parallel computation of turbulent fluid-flow. Comp. Appl. Math., 14, 97–105.Google Scholar
  19. [19]
    Chandrasekhar, S. 1957, The theory of turbulence. J. Madras Univ. B, 27, 251–275.Google Scholar
  20. [20]
    Buckingham, E. 1914, On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev., 4, 345–376.CrossRefGoogle Scholar
  21. [21]
    Davidson, P. A. Turbulence. An introduction for scientists and engineers. Cambridge University Press, UK, 2004.Google Scholar
  22. [22]
    Richardson, L. F. 1926, Atmospheric diffusion shown as a distance-neighbour graph. Proc. Roy. Soc. London, Ser. A, 6, 709–737.CrossRefGoogle Scholar
  23. [23]
    Pigolotti, S., Jensen, M. H., and Vulpiani, A. 2006, Absorbing processes in Richardson diffusion: Analytical results. Phys. Fluids, 18, 048104.CrossRefGoogle Scholar
  24. [24]
    Mann, K. H. and Lazier, J. R. N. 1996. Dynamics of Marine Ecosystems. Blackwell Science, UK, 2. edition.Google Scholar
  25. [25]
    Delichatsios, M. A. and Probstein, R. F. 1975, Coagulation in turbulent flow-theory and experiment. J. Colloid Interface Sci., 51, 394–405.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • H. L. Pécseli
    • 1
  • J. Trulsen
    • 2
  1. 1.Department of PhysicsUniversity of OsloOsloNorway
  2. 2.Institute of Theoretical AstrophysicsUniversity of OsloOsloNorway

Personalised recommendations