Advertisement

Stochastic modeling of fluid velocity seen by heavy particles for two-phase LES of non-homogeneous and anisotropic turbulent flows

  • Abdallah S. Berrouk
  • Dominique Laurence
  • James J. Riley
  • David E. Stock
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 11)

Abstract

The neglect of the effects of sub-filter scale velocities often remains a source of error in LES predictions of particle dispersion and deposition. Indeed, sub-filter fluctuations should be expected to be more significant for particles with smaller relaxation times compared to the LES-resolved turbulence time scales. In this work, a stochastic diffusion process is used to include the sub-filter scale transport when tracking a dilute suspension of heavy particles (glass beads in air with different Stokes’ numbers, namely 0.022 and 2.8) in a high Reynolds number, equilibrium turbulent shear flow (Re τ = 2, 200 based on the friction velocity and the pipe diameter). A Langevin-type equation is proposed to model the Lagrangian fluid velocity seen by solid particles, taking into account inertia and cross-trajectory effects. LES predictions are compared to RANS results and experimental observations. It is shown that the RANS approach is unable to predict particle dispersion statistics as accurately as LES does, especially for inertial particles characterized by a Stokes number smaller than one. For particles with Stokes number higher than one, both LES and RANS predictions compare reasonably well with the experimental results. More importantly, the use of a stochastic approach to model the sub-filter scale fluctuations has proven crucial for results concerning the small-Stokes-number particles. The model requires additional validation for non-equilibrium turbulent flows.

Keywords

Heavy Particle Particle Dispersion Inertial Particle Stokes Number Particle Reynolds Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lakehal D. (2002) Int. J.Multiphase Flows, 28:823–863CrossRefGoogle Scholar
  2. [2]
    Armenio V., Piomelli U., Fiorotto V. (1999) Phys. Fluids. A(11), pp. 3030–3042.CrossRefGoogle Scholar
  3. [3]
    Schumann U. (1975) J. Comp. Phys. 18,376.CrossRefGoogle Scholar
  4. [4]
    Shotorban B., Mashayek, F. (2005) Phys. Fluids 17, 081701.CrossRefGoogle Scholar
  5. [5]
    Pope S.B (2000) Cambridge University PressGoogle Scholar
  6. [6]
    Shotorban B., Mashayek, F. (2006) J.of Turbulence. Vol 7,No. 18.Google Scholar
  7. [7]
    Arnason G. (1982) Ph.D. dissertation, Washington State University, PullmanGoogle Scholar
  8. [8]
    Archambau F., Mehitoua N., Sakiz M. (2004) International Journal on Finite Volume.Google Scholar
  9. [9]
    Minier J-P., Peirano E. (2001) Physics Reports, 352:1–214.CrossRefGoogle Scholar
  10. [10]
    Smagorinsky J. (1963) Mon. Weather Rev. 91–99.Google Scholar
  11. [11]
    Maxey M.R., Riley J.J. (1983) Phys. Fluids., v 26,n4, pp. 883–9.CrossRefGoogle Scholar
  12. [12]
    Sommerfeld M.(1992) Int. J. Multiphase Flow, 18: pp.905–926.Google Scholar
  13. [13]
    Langevin P. (1908) Comptes Rendus Acad. Sci., Paris 146, 530–533.Google Scholar
  14. [14]
    Haworth. D.C., Pope S. (1986) Phys. Fluids. 29(2) pp. 387–405CrossRefGoogle Scholar
  15. [15]
    Kloeden P.E., Platen E., Schurz H. (1994) Springer-Verlag.Google Scholar
  16. [16]
    Gicquel L.Y.M., Givi P., Jaberi F.A, Pope S.B. (2002) Phys. Fluids. A(14)3.Google Scholar
  17. [17]
    Pozorski J., Minier J-P. (1998) Int. J. Multiphase Flow, 24: 913–945CrossRefGoogle Scholar
  18. [18]
    Minier J-P., Peirano E., Chibarro S. (2004) Phys. Fluids, 18:302–14.Google Scholar
  19. [19]
    Minier J. P. (2000) Monte Carlo Methods and Appl., Vol.7,No. 3, pp. 295–310.CrossRefGoogle Scholar
  20. [20]
    Wang L.P., Stock D.E. (1993) J. Atmos Sci. Vol.50,No 13, pp. 1897–1913.CrossRefGoogle Scholar
  21. [21]
    Carlier J. Ph., Khalij M., Oesterle B. (2005) Aerosol Sci. and Tech. 39:196–205CrossRefGoogle Scholar
  22. [22]
    Csanady G.T.: (1963) J. Atmos. Sci. Vol.20, pp 201–208.CrossRefGoogle Scholar
  23. [23]
    Sato Y., Yamamoto K. (1987) J. Fluid Mech. 175, 183.CrossRefGoogle Scholar
  24. [24]
    Riley J.J., (1971) Ph.D dissertation, The Johns Hopkins University, Baltimore.Google Scholar
  25. [25]
    Heinz S.(2003) Springer-Verlag. Berlin.Google Scholar
  26. [26]
    Minier J-P., Peirano E., Chibarro S. (2003) Monte Carlo Methods and Appl., Vol.9,No. 2, pp. 93–133.CrossRefGoogle Scholar
  27. [27]
    Maclnnes J. M., Bracco F. V. (1992) Phys. Fluids A4(12). pp.2809–2824Google Scholar
  28. [28]
    Arnason G., Stock D.E. (1983) American Society of Mechanical Engineers. Fluid Engineering Division. v10, pp. 25–29.Google Scholar
  29. [29]
    Taylor G.I. ( 1921) Proc. Roy. Soc. A 151, pp. 421–478.CrossRefGoogle Scholar
  30. [30]
    Hinze J.O. (1975) McGraw-Hill, 253,460–471.Google Scholar
  31. [31]
    Arnason G., Stock D.E. (1984) Experiments in Fluids. v2,n2, pp. 89–93.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Abdallah S. Berrouk
    • 1
  • Dominique Laurence
    • 1
    • 2
  • James J. Riley
    • 3
  • David E. Stock
    • 4
  1. 1.MACE/The University of ManchesterManchesterUK
  2. 2.Electricite de FranceMFTTParisFrance
  3. 3.Mechanical Engineering DepartmentUniversity of WashingtonSeattle
  4. 4.School of Mechanical and Materials EngineeringWashington State UniversityPullman

Personalised recommendations