Advertisement

DNS of particle-laden flow over a backward facing step at a moderate Reynolds number

  • A. Kubik
  • L. Kleiser
Conference paper
  • 1.2k Downloads
Part of the ERCOFTAC Series book series (ERCO, volume 11)

Abstract

The present study investigates turbulence modification by particles in a backward-facing step flow with fully developed channel flow at the inlet. This flow configuration provides a range of flow regimes, such as wall turbulence, free shear layer and separation, in which to compare turbulence modification. Fluid-phase velocities in the presence of different mass loadings of particles with a Stokes number of St = 3.0 are studied. Local enhancement and attenuation of the streamwise component of the fluid turbulence of up to 27% is observed in the channel extension region for a mass loading of φ = 0.2. The amount of modification decreases with decreasing mass loading. No modification of the turbulence is found in the separated shear layer or in the re-development region behind the re-attachment, although there were significant particle loadings in these regions.

Keywords

Reynolds Number Shear Layer Direct Numerical Simulation Feedback Force Mass Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Brenner. The slow motion of a sphere through a viscous fluid towards a plane surface. Chemical Engineering Science, 16:242–251, 1961.CrossRefGoogle Scholar
  2. [2]
    J. W. Brooke, K. Kontomaris, T. J. Hanratty, and J. B. McLaughlin. Turbulent deposition and trapping of aerosols at a wall. Phys. Fluids A, 4(4):825–834, 1992.CrossRefGoogle Scholar
  3. [3]
    T. M. Burton and J. K. Eaton. Fully resolved simulations of particle-turbulence interaction. J. Fluid Mech., 545:67–111, 2005.CrossRefGoogle Scholar
  4. [4]
    M. Caporaloni, F. Tampieri, F. Trombetti, and O. Vittori. Transfer of particles in nonisotropic air turbulence. J. Aerosol. Sci., 32:565, 1975.Google Scholar
  5. [5]
    R. Clift, J. R. Grace, and M. E. Weber. Bubbles, Drops, and Particles. Academic Press, New York, 1978.Google Scholar
  6. [6]
    S. Elghobashi. On predicting particle-laden turbulent flows. Appl. Sci. Res., 52:309–329, 1994.CrossRefGoogle Scholar
  7. [7]
    S. Elghobashi and G. C. Truesdell. On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys. Fluids A, 5(7):1790–1801, 1993.CrossRefGoogle Scholar
  8. [8]
    H. Faxen. Die Bewegung einer starren Kugel laengs der Achse eines mit zaeher Fluessigkeit gefuellten Rohres. Arkiv Mat. Astron. Fys., 17(27):1–28, 1923.Google Scholar
  9. [9]
    J. R. Fessler and J. K. Eaton. Turbulence modification by particles in a backward-facing step flow. J. Fluid Mech., 394:97–117, 1999.CrossRefGoogle Scholar
  10. [10]
    Y. Hardalupas, A. M. K. P. Taylor, and J. H. Whitelaw. Particle dispersion in a vertical round sudden expansion flow. Proc. R. Soc. Lond. A, 341:411–442, 1992.Google Scholar
  11. [11]
    A. Kubik. Numerical simulation of particle-laden, wall-bounded attached and separated flows. PhD thesis, ETH Zuerich. In preparation. 2006.Google Scholar
  12. [12]
    A. Kubik and L. Kleiser. Direct numerical simulation of particle statistics and turbulence modification in vertical turbulent channel flow. In Direct and Large-Eddy Simulation VI. Springer, Dordrecht, The Netherlands, 2005. To appear.Google Scholar
  13. [13]
    A. Kubik and L. Kleiser. Particle-laden turbulent channel flow and particle-wall interactions. Proc. Appl. Math. Mech., 5:597–598, 2005.CrossRefGoogle Scholar
  14. [14]
    Y. Li, J. B. McLaughlin, K. Kontomaris, and L. Portela. Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids, 13(10):2957–2967, 2001.CrossRefGoogle Scholar
  15. [15]
    M. R. Maxey and J. J. Riley. Equation of motion for a small rigid sphere in nonuniform flow. Phys. Fluids, 26(4):883–889, 1983.CrossRefGoogle Scholar
  16. [16]
    E. E. Michaelides. Review-The transient equation of motion for particles, bubbles, and droplets. Trans. ASME, J. Fluids Eng., 119(2):233–247, 1997.Google Scholar
  17. [17]
    F. Odar and W. S. Hamilton. Forces on a sphere accelerating in viscous fluid. J. Fluid Mech., 18:302–314, 1964.CrossRefGoogle Scholar
  18. [18]
    P. G. Saffmann. The lift on a small sphere in a slow shear flow. J. Fluid Mech., 22:385–400, 1965.CrossRefGoogle Scholar
  19. [19]
    Q. Wang and K. D. Squires. Large eddy simulation of particle-laden turbulent channel flow. Phys. Fluids, 8(5):1207–1223, 1996.CrossRefGoogle Scholar
  20. [20]
    D. Wilhelm, C. Haertel, and L. Kleiser. Computational analysis of the twodimensional-three-dimensional transition in forward-facing step flow. J. Fluid Mech., 489:1–27, 2003.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • A. Kubik
    • 1
  • L. Kleiser
    • 1
  1. 1.Institute of Fluid DynamicsETHZürichSwitzerland

Personalised recommendations