Skip to main content

Lagrangian passive scalar intermittency in marine waters: theory and data analysis

  • Conference paper
Particle-Laden Flow

Part of the book series: ERCOFTAC Series ((ERCO,volume 11))

  • 1521 Accesses

Abstract

Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. We consider here intermittency in a Lagrangian framework, which is also a natural representation for marine organisms. We characterize intermittency using multi-fractal power-law scaling exponents. In this paper we recall four theoretical relations previously obtained to link Lagrangian and Eulerian passive scalar multi-fractal functions. We then experimentally estimate these exponents and compare the result to the theoretical relations. Section 1 describes the non intermittent Lagrangian passive scalar scaling laws; section 2 introduces the multi-fractal generalization, and gives the four theoretical relations ; section 3 presents experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kolmogorov AN (1941) Izv Akad Nauk SSSR 30: 301

    Google Scholar 

  2. Obukhov AM (1949) Izv Akad Nauk SSSR Geogr. Geofiz. 13: 58

    Google Scholar 

  3. Corrsin S (1951) J Appl Phys 22: 469

    Article  Google Scholar 

  4. Frisch U (1995) Turbulence; The Legacy of AN Kolmogorov. Cambridge University Press, Cambridge

    Google Scholar 

  5. Kraichnan RH (1994) Phys Rev Lett 72: 1016

    Article  Google Scholar 

  6. Falkovich G, Gawedzki K, Vergassola M (1994) Rev Mod Phys 73: 913

    Article  Google Scholar 

  7. Landau L, Lifshitz EM (1944) Fluid Mechanics. MIR, Moscow

    Google Scholar 

  8. Inoue E (1952) J Meteorol Soc Japan 29: 246

    Google Scholar 

  9. Novikov EA (1989) Phys Fluids A 1:326

    Article  Google Scholar 

  10. Antonia RA, Hopfinger E, Gagne Y, Anselmet F (1984) Phys Rev A 30: 2704

    Article  Google Scholar 

  11. Schmitt FG, Schertzer D, Lovejoy S, Brunet Y (1996) Europhys Lett 34: 195

    Article  Google Scholar 

  12. Schmitt FG (2005) Eur Phys J B 48:129

    Article  Google Scholar 

  13. Ruiz-Chavarria G, Baudet C, Ciliberto S (1996) Physica D 99: 369

    Article  Google Scholar 

  14. Boratav ON, Pelz RB (1998) Phys Fluids 10: 2122

    Article  Google Scholar 

  15. Xu G, Antonia RA, Rajagopalan S (2000) Europhys Lett 49: 452

    Article  Google Scholar 

  16. Moisy F, Willaime H, Andersen JS, Tabeling P (2001) Phys Rev Lett 86: 4827

    Article  Google Scholar 

  17. Gylfason A, Warhaft Z (2004) Phys Fluids 16: 4012

    Article  Google Scholar 

  18. Watanabe T, Gotoh T (2004) New J Phys 6: 40

    Article  Google Scholar 

  19. Pinton JF, Plaza F, Danaila L, Le Gal P, Anselmet F (1998) Physica D 122: 187

    Article  Google Scholar 

  20. Leveque E, Ruiz-Chavarria G, Baudet C, Ciliberto S (1999) Phys Fluids 11: 1869

    Article  Google Scholar 

  21. Mydlarski L (2003) J Fluid Mech 475: 173

    Article  Google Scholar 

  22. Seuront L, Schmitt FG (2004) Geophys Res Lett 31: L03306

    Article  Google Scholar 

  23. Seuront L, Schmitt F, Schertzer D, Lagadeuc Y, Lovejoy S (1996) Nonlin Proc Geophys 3: 236

    Article  Google Scholar 

  24. Benzi R, et al. (1993) Europhysics Letters 24: 275

    Article  Google Scholar 

  25. Seuront L (2005) Mar Ecol Prog Ser 302: 93

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Schmitt, F.G., Seuront, L. (2007). Lagrangian passive scalar intermittency in marine waters: theory and data analysis. In: Geurts, B.J., Clercx, H., Uijttewaal, W. (eds) Particle-Laden Flow. ERCOFTAC Series, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6218-6_11

Download citation

Publish with us

Policies and ethics