Advertisement

Refined vorticity statistics of decaying rotating three-dimensional turbulence

  • L. J. A. van Bokhoven
  • C. Cambon
  • L. Liechtenstein
  • F. S. Godeferd
  • H. J. H. Clercx
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 11)

Abstract

The influence of background rotation on all nontrivial triple correlations of vorticity (VTCs) has been studied for an unbounded incompressible homogeneous turbulent flow, using pseudo-spectral direct numerical simulation. It is found that the time evolutions of the VTCs are in agreement with exact theoretical predictions for rotating turbulence presented herein. Furthermore, the effects of viscosity, initial value of the velocity derivative skewness Si u i (t ini), and background rotation rate on the vertical vorticity skewness Sω 3 have been thoroughly investigated. The initial growth rate of Sω3 is found to be proportional to t 0.75±0.1 for all considered cases, in agreement with recent experimental results by Morize et al. [Phys. Fluids 17, 095105 (2005)]. Also, it is found that higher background rotation rates — implying more linearity — result in lower final values of Sω3, while lower viscosities and higher Si u i (t ini) both yield higher final values of Sω3.

Keywords

Large Eddy Simulation Direct Numerical Simulation Rossby Number Triple Correlation Rapid Distortion Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bartello P, Métais O, Lesieur M (1994), J. Fluid Mech. 273:1–29.CrossRefGoogle Scholar
  2. [2]
    Bartello P (2006), private communication.Google Scholar
  3. [3]
    Batchelor GK, Townsend AA (1947), Proc. Roy. Soc. A 191:534–550.CrossRefGoogle Scholar
  4. [4]
    Cambon C, Jacquin L (1989), J. Fluid Mech. 202:295–317.CrossRefGoogle Scholar
  5. [5]
    Cambon C, Mansour NN, Godeferd FS (1997), J. Fluid Mech. 337:303–332.CrossRefGoogle Scholar
  6. [6]
    Cambon C, Scott JF (1999), Annu. Rev. Fluid Mech. 31:1–53.CrossRefGoogle Scholar
  7. [7]
    Davidson PA, Staplehurst PJ, Dalziel SB (2006), J. Fluid Mech. 557:135–144.CrossRefGoogle Scholar
  8. [8]
    Greenspan HP (1968) The theory of rotating fluids. Cambridge University Press.Google Scholar
  9. [9]
    Gence J-N, Frick C (2001), C. R. Acad. Sci. Paris Série IIB 329:351–356.Google Scholar
  10. [10]
    Godeferd FS, Lollini L (1999), J. Fluid Mech. 393:257–308.CrossRefGoogle Scholar
  11. [11]
    Jacquin L, Leuchter O, Cambon C, Mathieu J (1990), J. Fluid Mech. 220:1–52.CrossRefGoogle Scholar
  12. [12]
    Liechtenstein L, Godeferd FS, Cambon C (2005), JoT 6:1–21.Google Scholar
  13. [13]
    McComb WD (1990) The Physics of Fluid Turbulence, Oxford Engineering Science Series 25. Clarendon Press, Oxford.Google Scholar
  14. [14]
    Morize C, Moisy F, Rabaud M (2005), Phys. Fluids 17:095105.CrossRefGoogle Scholar
  15. [15]
    Morize C, Moisy F, Rabaud M, Sommeria J (2006), Conf. Proc. TI2006, Porquerolles, France.Google Scholar
  16. [16]
    Rogallo RS (1981), NASA Tech. Mem. 81315.Google Scholar
  17. [17]
    Vincent A, Meneguzzi M (1991), J. Fluid Mech. 225:1–20.CrossRefGoogle Scholar
  18. [18]
    Zavala Sansón L, Van Heijst GJF (2000), J. Fluid Mech. 412:75–91.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • L. J. A. van Bokhoven
    • 1
  • C. Cambon
    • 2
  • L. Liechtenstein
    • 2
  • F. S. Godeferd
    • 2
  • H. J. H. Clercx
    • 1
  1. 1.Fluid Dynamics Laboratory, Department of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Laboratoire de Mécanique des Fluides et d’AcoustiqueÉcole Centrale de LyonÉcully CedexFrance

Personalised recommendations