Advertisement

The Interrelationship Between The Spatial Distribution Of Microorganisms And Vegetation In Forest Soils

  • Sherry J. Morris
  • William J. Dress

Recent advances in techniques for investigating soil organisms and evaluating spatial structure have improved our understanding of the spatial dynamics of the soil microbial community. Identifying the scale at which microbial community function and interact in forest soils is essential to designing sampling schemes that will allow us to adequately evaluate the complex relationships between the microbial community and vegetation. Geostatistical tools useful for evaluating these relationships include tools that allow researchers to identify the extent to which the data are spatially structured and allow for the creation of maps for linking organisms and ecosystem characteristics that might exist at different scales. Research on the microbial community in forest soils using these and other scaling techniques has demonstrated that microbial communities both are patterned by and influence the spatial dynamics of the vegetation in their environment at scales that range from centimeter to stand size. Microbes are key to nutrient cycling and microbial community dynamics respond to the vegetation in their immediate vicinity in ways that reflect both the specific identity of the microbe and plant and the spatially patterning of the processes. The mechanisms that underlie these tight relationships of pattern and function reflect the dependence of autotrophs on decomposers and mutualists for nutrient acquisition and the long evolutionary history of these organisms. Improved understanding of the complex spatial relationships between the microbial community and vegetation will improve our ability to provide management guidelines that will allow managers to protect our forest resources. Keywords: forest soils, bacteria, fungi, microorganism, ecosystem function, community structure

Keywords

Microbial Community Microbial Biomass Arbuscular Mycorrhizal Fungus Arbuscular Mycorrhizal Forest Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M. F., C. Crisafulli, C. F. Friese, and S. L. Jeakins, 1992, Re-formation of mycorrhizal symbioses on Mount St Helens, 1980-1990 - interactions of rodents and mycorrhizal fungi, Mycol. Res. 96:447-453.CrossRefGoogle Scholar
  2. Bauhus, J., D. Pare, and L. Cote, 1998, Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest, Soil Biol. Biochem. 30: 1077-1089.CrossRefGoogle Scholar
  3. Belotte, D., J. B. Curien, R. C. Maclean, and G. Bell, 2003, An experimental test of local adaptation in soil bacteria, Evolution 57:27-36.PubMedGoogle Scholar
  4. Bever, J. D., 1994, Feedback between plants and their soil communities in an old field com-munity, Ecology 75:1965-1977.CrossRefGoogle Scholar
  5. Bever, J. D., 2003, Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests, New Phytol. 157:465-473.CrossRefGoogle Scholar
  6. Bever, J. D., and E. L. Simms, 2000, Evolution of nitrogen fixation in spatially structured populations of Rhizobium, Heredity 85:366-372.CrossRefPubMedGoogle Scholar
  7. Binkley, D., 1995, The influence of tree species on forest soils: processes and patterns, in: Proceedings of the Trees and Soils Workshop, 28 February-2 March, Canterbury, N. Z., D. J. Mead, and I. S. Cornforth, eds., Agronomy Society of New Zealand, Canterbury, New Zealand, Special Publication 10, pp. 1-34.Google Scholar
  8. Binkley, D., and D. Valentine, 1991, Fifty-year biogeochemical effects of green ash, white pine, and Norway spruce in a replicated experiment, For. Ecol. Manage. 40:13-25.CrossRefGoogle Scholar
  9. Boerner, R. E. J., and J. G. Kooser, 1989, Leaf litter redistribution among forest patches within an Allegheny Plateau watershed, Landscape Ecol. 2:81-92.CrossRefGoogle Scholar
  10. Boerner, R. E. J., and S. D. Koslowsky, 1989, Microscale variations in nitrogen mineralization and nitrification in a beech-maple forest, Soil Biol. Biochem. 21:795-801.CrossRefGoogle Scholar
  11. Boerner, R. E. J., B. G. DeMars, and P. N. Leicht, 1996, Spatial patterns of mycorrhizal infective-ness of soils long a successional chronosequence, Mycorrhiza 6:79-90.CrossRefGoogle Scholar
  12. Boerner, R. E. J., J. A. Brinkman, and A. Smith, 2005, Seasonal variations in enzyme activity and organic carbon in soil of a burned and unburned hardwood forest, Soil Biol. Biochem. 37:1419-1426.CrossRefGoogle Scholar
  13. Brandtberg, P. O., J. Bengtsson, and H. Lundkvist, 2004, Distributions of the capacity to take up nutrients by Betula spp. and Picea abies in mixed stands, For. Ecol. Manage. 198:193-208.CrossRefGoogle Scholar
  14. Brown, M. E., 1974, Seed and root bacterization, Annu. Rev. Phytopathol. 12:181-197.CrossRefGoogle Scholar
  15. Brundrett, M. C., 2002, Coevolution of roots and mycorrhizas of land plants, New Phytol. 154:275-304.CrossRefGoogle Scholar
  16. Chapela, I. H., L. J. Osher, T. R. Horton, and M. R. Henn, 2001, Ectomycorrhizal fungi intro-duced with exotic pine plantations induce soil carbon depletion, Soil Biol. Biochem. 33: 1733-1740.CrossRefGoogle Scholar
  17. Chapin, F. S., 2003, Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change, Ann. Bot. 91:455-463.CrossRefPubMedGoogle Scholar
  18. Clements, F. E., 1936, Nature and structure of the climax, J. Ecol. 24:252-284.CrossRefGoogle Scholar
  19. Coleman, D. C., D. A. Crossley, and P. F. Hendrix, 2004, Fundamentals of Soil Ecology. Elsevier Academic Press, New York, NY.Google Scholar
  20. Cooper, R., 1959, Bacterial fertilizers in the Soviet Union, Soil Fertil. 22:327-333.Google Scholar
  21. Crozier, C. R., and R. E. J. Boerner, 1986, Stemflow induced forest floor heterogeneity in a mixed mesophytic forest, Bartonia 52:1-8.Google Scholar
  22. Decker, K. L. M., R. E. J. Boerner, and S. J. Morris, 1999, Scale-dependent patterns of soil enzyme activity in a forested landscape, Can. J. For. Res. 29:232-241.CrossRefGoogle Scholar
  23. Denison R .F, C. Bledsoe, M. Kahn, F. O Gara, E. L. Simms, and L. S. Thomashow, 2003, Cooperation in the rhizosphere and the “free rider” problem, Ecology 84:838-845.CrossRefGoogle Scholar
  24. Dijkstra, F. A., 2003, Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US, For. Ecol. Manage. 175:185-194.CrossRefGoogle Scholar
  25. Dijkstra, F. A., C. Geibe, S. Holmstrom, U. S. Lundstrom, and N. van Breeman, 2001, The effect of organic acids on base cation leaching from the forest floor under six North American tree species, Eur. J. Soil Sci. 52:205-214.CrossRefGoogle Scholar
  26. Dixon, R. K., S. Brown, R. A. Houghton, M. A. Solomon, M. C. Trexler, and J. Wisniewski, 1994, Carbon pools and flux of global forest ecosystems, Science 263:185-190.CrossRefPubMedGoogle Scholar
  27. Domenech, J., B. Ramos-Solano, A. Probanza, J. A. Lucas-García, J. J. Colón, and F. J. Gutiérrez-Mañero, 2004, Bacillus spp. and Pisolithus tinctorius effects on Quercus ilex ssp. ballota: a study on tree growth, rhizosphere community structure and mycorrhizal infection, For. Ecol. Manage. 194:293-303.CrossRefGoogle Scholar
  28. Eviner, V. T., 2004, Plant traits that influence ecosystem processes vary independently among species, Ecology 85:2215-2229.CrossRefGoogle Scholar
  29. Finzi, A. C., N. van Breeman, and C. D. Canham, 1998a, Canopy tree-soil interactions within temperate forests: species effects on soil carbon and nitrogen, Ecol. Appl. 8:440-446.Google Scholar
  30. Finzi, A. C., C. D. Canham, and N. van Breeman, 1998b, Canopy tree-soil interactions within temperate forests: species effects on soil pH and cations, Ecol. Appl. 8:447-454.Google Scholar
  31. Fitter, A. H., 1977, Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses, New Phytol. 79:119-125.CrossRefGoogle Scholar
  32. Franklin, R. B., and A. L. Mills, 2003, Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field, FEMS Microbiol. Ecol. 44: 335-346.CrossRefPubMedGoogle Scholar
  33. Gallardo, A., J. J. Rodriguez-Saucedo, F. Covelo, and R. Fernandez-Ales, 2000, Soil nitrogen heterogeneity in a Dehesa ecosystem, Plant Soil 222:71-82.CrossRefGoogle Scholar
  34. Geary, R. C., 1954, The contiguity ratio and statistical mapping, Inc. Ststcian. 5:115-145.Google Scholar
  35. Gesper, P. L., and N. Holowaychuk, 1971, Some affects of stem flow from forest canopy trees on chemical properties of soils, Ecology 52:691-702.CrossRefGoogle Scholar
  36. Gleason, H. A., 1926, The individualistic concept of the plant association, Bull. Torrey Bot. Club. 53:7-26.CrossRefGoogle Scholar
  37. Goovaerts, P., 1998, Geostatistical tools for characterizing the spatial variability of micro-biological and physico-chemical soil properties, Biol. Fertil. Soils. 27:315-334.CrossRefGoogle Scholar
  38. Grayston, S. J., and C. D. Campbell, 1996, Functional biodiversity of microbial communities in the rhizosphere of hybrid larch (Larix eurolepis) and Sitka spruce (Picea stichensis), Tree Physiol. 16:1031-1038.PubMedGoogle Scholar
  39. Grayston, S. J., and C. E. Prescott, 2005, Microbial communities in forest floors under four tree species in coastal British Columbia, Soil Biol. Biochem. 37:1157-1167.CrossRefGoogle Scholar
  40. Grayston, S. J., D. Vaughan, and D. Jones, 1996, Rhizosphere carbon flow in trees, in compare-son with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability, Appl. Soil Ecol. 5:29-56.CrossRefGoogle Scholar
  41. Hansen, R. A., 1999, Red oak litter promotes a microarthropod functional group that accele-rates its decomposition, Plant Soil 209:37-45.CrossRefGoogle Scholar
  42. Hendricks, J. J., J. D. Aber, K. J. Nadelhoffer, and R. D. Hallett, 2000, Nitrogen controls on fine root substrate quality in temperate forest ecosystems, Ecosystems 3:57-69.CrossRefGoogle Scholar
  43. Hobbie, S. E., 1992, Effects of plant species on nutrient cycling, Trends Ecol. Evol. 7:336-339.CrossRefGoogle Scholar
  44. Jackson, R. B., and M. M. Caldwell, 1993, The scale of nutrient heterogeneity around indivi-dual plants and its quantification with geostatistics, Ecology 74:612-614.CrossRefGoogle Scholar
  45. Jackson, R. B., J. H. Manwaring, and M. M. Caldwell, 1990, Rapid physiological adjustment of roots to localized soil enrichment, Nature 344:58-60.CrossRefPubMedGoogle Scholar
  46. Klironomos, J. N., 2002, Feedback with soil biota contributes to plant rarity and invasiveness in communities, Nature 417:67-70.CrossRefPubMedGoogle Scholar
  47. Klironomos, J. N., 2003, Variation in plant response to native and exotic arbuscular mycorrhizal fungi, Ecology 84:2292-2301.CrossRefGoogle Scholar
  48. Kravchenko, A. N., C. W. Boast, and D. G. Bullock, 1999, Multifractal analysis of soil spatial variability, Agron. J. 91:1033-1041.CrossRefGoogle Scholar
  49. Lawton J. H., D. E. Bignell, G. F. Bloemers, P. Eggleton, and M. E. Hodda, 1996, Carbon flux and diversity of nematodes and termites in Cameroon forest soils, Biodivers. Conserv. 5:261-273.CrossRefGoogle Scholar
  50. Leckie, S. E., C. E. Prescott, and S. J. Grayston, 2004, Forest floor microbial community res-ponse to tree species and fertilization of regenerating coniferous forests, Can. J. For. Res. 34:1426-1435.CrossRefGoogle Scholar
  51. Legendre, P., and M. J. Fortin, 1989, Spatial pattern and ecological analysis, Vegetatio, 80: 107-138.CrossRefGoogle Scholar
  52. Lovett, G. M., and M. J. Mitchell, 2004, Sugar maple and nitrogen cycling in the forests of eastern North America, Front. Ecol. Env. 2:81-88.CrossRefGoogle Scholar
  53. Lovelock C. E., and R. Miller, 2002, Heterogeneity in inoculum potential and effectiveness of arbuscular mycorrhizal fungi, Ecology, 83:823-832.CrossRefGoogle Scholar
  54. Lucas García, J. A., J. Domenech, C. Santamaría, M. Camacho, A. Daza, and F. J. Gutierrez Mañero, 2004, Growth of forest plants (pine and holm-oak) inoculated with rhizobacteria: relationship with microbial community structure and biological activity of its rhizosphere, Environ. Exp. Bot. 52:239-251.CrossRefGoogle Scholar
  55. Lussenhop, J., and D. T. Wicklow, 1984, Changes in spatial distribution of fungal propagules associated with invertebrate activity in soil, Soil Biol. Biochem. 16:601-604.CrossRefGoogle Scholar
  56. Mandelbrot, B. B., 1977, Fractals: Form, Chance and Dimension. Freeman Press, San Francisco, CA.Google Scholar
  57. Matherton, G., 1963, Principles of geostatistics, Econ. Geol. 58:1246-1266.CrossRefGoogle Scholar
  58. Mitchell, M. J., 1978, Vertical and horizontal distributions of oribatid mites (Acari: Crypto-stigmata) in an aspen woodland soil, Ecology 59:516-525.CrossRefGoogle Scholar
  59. Moran, P. A. P., 1948, The interpretation of statistical maps, J. Roy. Statist. Soc. Ser. B 10: 243-251.Google Scholar
  60. Moran, P. A. P., 1950, Notes on continuous stochastic phenomena, Biometrika 37:17-23.PubMedGoogle Scholar
  61. Morris, S. J., 1999, Spatial distribution of fungal and bacterial biomass in southern Ohio hardwood forest soils: fine scale variability and microscale patterns, Soil Biol. Biochem. 31:1375-1386.CrossRefGoogle Scholar
  62. Morris, S. J., and R. E. J. Boerner, 1999, Spatial distribution of fungal and bacterial biomass in southern Ohio hardwood forest soils: scale dependency and landscape patterns, Soil Biol. Biochem. 31:887-902.CrossRefGoogle Scholar
  63. Nambiar, E. K. S., 1987, Do nutrients retranslocate from fine roots? Can. J. For. Res. 17:913-918.CrossRefGoogle Scholar
  64. Nunan, N., K. Wu, I. M. Young, J. W. Crawford, and K. Ritz, 2002, In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil, Microb. Ecol. 44: 296-305.CrossRefPubMedGoogle Scholar
  65. Packer, A., and K. Clay, 2000, Soil pathogens and spatial patterns of seedling mortality in a temperate tree, Nature 404:278-281.CrossRefPubMedGoogle Scholar
  66. Pennanen, T., J. Liski, E. Bååth, V. Kitunin, J. Uotila, C. J. Westman, and J. Fritze, 1999, Structure of the microbial communities in coniferous forest soils in relation to site fertility and stand development stage, Microb. Ecol. 38:168-179.CrossRefPubMedGoogle Scholar
  67. Peterjohn, W. T., C. J. Foster, M. J. Christ, and M. B. Adams, 1999, Patterns of nitrogen availability within a forested watershed exhibiting symptoms of nitrogen saturation, For. Ecol. Manage. 119:247-257.CrossRefGoogle Scholar
  68. Priha, O., and A. Smolander, 1997, Microbial biomass and activity in soil and litter under Pinus sylvestris, Picea abies and Betula pendula at originally similar field afforestation sites, Biol. Fertil. Soils 24:45-51.CrossRefGoogle Scholar
  69. Priha, O., and A. Smolander, 1999, Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites, Soil Biol. Biochem. 31:965-977.CrossRefGoogle Scholar
  70. Priha, O., S. J. Grayston, R. Hiukka, T. Pennanen, and A. Smolander, 2001, Microbial com-munity structure and characteristics of the organic matter in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites, Biol. Fertil. Soils 33:17-24.CrossRefGoogle Scholar
  71. Priha, O., S. J. Grayston, T. Pennanen, and A. Smolander, 1999, Microbial activities related to C and N cycling and microbial community structure in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings in an organic and mineral soil, FEMS Microbiol. Ecol. 30:187-199.CrossRefPubMedGoogle Scholar
  72. Qi, Y., and J. Wu, 1996, Effects of changing spatial scales on analysis of landscape patterns using spatial autocorrelation indices, Landscape Ecol. 11:39-49.CrossRefGoogle Scholar
  73. Reinhart, K. O., A. Packer, W. H. Van der Putten, and K. Clay, 2003, Plant-soil biota inter-actions and spatial distribution of black cherry in its native invasive ranges, Ecol. Lett. 6: 1046-1050.CrossRefGoogle Scholar
  74. Rossi, R. E., D. J. Mulla, A. G. Journel, and E. H. Franz, 1992, Geostatistical tools for modeling and interpreting ecological spatial dependence, Ecol. Monogr. 62:277-314.CrossRefGoogle Scholar
  75. Saetre, P., P. O. Brandtberg, H. Lundkvist, and J. Bengtsson, 1999, Soil organisms and carbon, nitrogen and phosphorus mineralization in Norway spruce and mixed Norway spruce-Birch stands, Biol. Fertil. Soils 28:382-388.CrossRefGoogle Scholar
  76. Schippers, B., R. J. Scheffer, B. J. J. Lugtenberg, and P. J. Weisbeck, 1995, Biocoating of seeds with plant growth promoting rhizobacteria to improve plant establishment, Outlook Agric. 24:179-185.Google Scholar
  77. Stoyan, H., H. De-Polli, S. Bohm, G. P. Robertson, and E. A. Paul, 2000, Spatial hetero-geneity of soil respiration and related properties at the plant scale, Plant Soil 222:203-214.CrossRefGoogle Scholar
  78. Templer, P., S. Findlay, and G. Lovett, 2003, Soil microbial biomass and nitrogen transformations among five tree species of the Catskill Mountains, New York, USA, Soil Biol. Biochem. 35:607-613.CrossRefGoogle Scholar
  79. Templer, P. H., and T. E. Dawson, 2004, Nitrogen uptake by four tree species of the Catskill Mountains, New York: implications for forest N dynamics, Plant Soil 262:251-261.CrossRefGoogle Scholar
  80. Templer, P. H., G. M. Lovett, K. C. Weathers, S. E. Findlay, and T. E. Dawson, 2005, Influence of tree species on forest nitrogen retention in the Catskill Mountains, New York, USA, Ecosystems 8:1-16.CrossRefGoogle Scholar
  81. Turner, D. P., and E. H. Franz, 1985, The influence of western hemlock and western red cedar on microbial numbers, nitrogen mineralization, and nitrification, Plant Soil 88:259-267.CrossRefGoogle Scholar
  82. Van Der Heijden, M. G. A., J. N. Klironomos, M. Ursic, P. Moutoglis, R. Streitwolf-Engel, T. Boller, A. Wiemken, and I. R. Sanders, 1998, Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity, Nature 396:69-72.CrossRefGoogle Scholar
  83. Wall, D. H., and J. C. Moore, 1999, Interactions underground - soil biodiversity, mutualisms and ecosystem processes, Bioscience 49:109-117.CrossRefGoogle Scholar
  84. Wardle, D. A., R. D. Bardgett, J. N. Klironomos, H. Setäla, W. H. van der Putten, and D. H. Wall, 2004, Ecological linkages between aboveground and belowground biota, Science, 304:1629-1633.CrossRefPubMedGoogle Scholar
  85. Washburn, C. S. M., and M .A. Arthur, 2003, Spatial variability in soil nutrient availability in an oak-pine forest: potential effects of tree species, Can. J. For. Res. 33:2321-2330.CrossRefGoogle Scholar
  86. Wu, J., and D. E. Jelinski. 1995, Pattern and scale in ecology: the modifiable area unit problem, in: Lectures in Modern Ecology, B. Li, ed., Science Press, Beijing.Google Scholar
  87. Zinke, P. J., 1962, The pattern of influence of individual forest trees on soil properties, Ecology 43:130-133.CrossRefGoogle Scholar
  88. Zinke, P. J., and R. L. Crocker, 1962, The influence of giant Sequoia on soil properties, For. Sci. 8:2-11.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Sherry J. Morris
    • 1
  • William J. Dress
    • 2
  1. 1.Biology DepartmentBradley UniversityPeoriaUSA
  2. 2.Science DepartmentRobert Morris UniversityMoon TownshipUSA

Personalised recommendations