Skip to main content

Analysis Of Spatial Patterns Of Rhizoplane Colonization

  • Chapter
The Spatial Distribution of Microbes in the Environment

Natural populations and habitats are spatially heterogeneous: organisms and the resources they use are not uniformly distributed over space or time, but instead are found in different degrees of aggregation. The rhizosphere, that region of soil surrounding plant roots where microbial activity is influenced by the root, is one of the most microbiologically active habitats on earth. The rhizoplane, the innermost boundary of the rhizosphere, is the surface of the plant root including root hairs, and is a hot spot of plant–microbe activity. Bacteria and fungi on the rhizoplane are favorably positioned to intercept root exudates, and rhizoplane sites are points of root interaction with plant pathoens as well as beneficial microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bae, Y. S., and G. R. Knudsen, 2000, Cotransformation of Trichoderma harzianum with β-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils. Appl. Environ. Microbiol. 66:810-815.

    Article  PubMed  CAS  Google Scholar 

  • Bae, Y. S., and G. R. Knudsen, 2001, Influence of a fungus-feeding nematode on growth and biocontrol efficacy of Trichoderma harzianum. Phytopathology 91:301-306.

    Article  PubMed  CAS  Google Scholar 

  • Bahme, J. B., and M. N. Schroth, 1987, Spatial-temporal colonization patterns of a rhizo-bacterium on underground organs of potato. Phytopathology 77:1093-1100.

    Article  Google Scholar 

  • Baker, R., 1981, Ecology of the fungus Fusarium, competition, in: Fusarium: Diseases, Biology, and Taxonomy, P. E. Nelson, T. A. Nelson, T. A. Tousson, and R. J. Cook, eds., Penn State University Press, University Park, PA, pp. 245-258.

    Google Scholar 

  • Campbell, R., and R. Porter, 1982, Low-temperature scanning electron microscopy of micro-organisms in soil. Soil Biol. Biochem. 14:241-245.

    Article  Google Scholar 

  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C., 1994, Green fluorescent protein as a marker of gene expression. Science 263:802-805.

    Article  PubMed  CAS  Google Scholar 

  • Chellemi, D. O., K. G. Rohrbach, R. S. Yost, and R. M. Sonoda, 1988, Analysis of the spatial pattern of plant pathogens and diseased plants using geostatistics. Phytopathology 78:221-226.

    Article  Google Scholar 

  • Cochran, W. G., 1950, Estimation of bacterial densities by means of the most probable number. Biometrics March:105-116.

    Google Scholar 

  • Colwell, R. R., P. R. Brayton, D. J. Grimes, D. B. Roszak, S. A. Huq, and L. M. Palmer, 1985, Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Biol. Tech. 3:817-820.

    Google Scholar 

  • Cook, R. J., 1993, Making greater use of introduced microorganisms for biological control of plant pathogens. Ann. Rev. Phytopathol. 31:53-80.

    Article  CAS  Google Scholar 

  • Cormack, B. P., G. Bertram, M. Egerton, N. A. R. Gow, S. Falkow, and A. J. P. Brown, 1997, Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. J. Gen. Microbiol. 143:303-311.

    CAS  Google Scholar 

  • Cunningham, J. L., and Hagedorn, D. J., 1962, Attraction of Aphanomyces euteiches zoospores to pea and other plant roots. Phytopathology 52:616-618.

    Google Scholar 

  • Curl, E. A., and B. Truelove, 1986, The Rhizosphere. Springer, Berlin, p. 288.

    Google Scholar 

  • Dandurand, L. M., and G. R. Knudsen, 1994, Spatial description of encysted zoospores on roots: Influence of sampling intensity. Phytopathology 84:1154.

    Google Scholar 

  • Dandurand, L. M., and Menge, J. A., 1992, The influence of Fusarium solani on citrus root rot caused by Phytophthora parasitica and Phytophthora citrophthora. Plant Soil. 144:13-21.

    Article  Google Scholar 

  • Dandurand, L. M., and Menge, J. A., 1994, Influence of Fusarium solani on chemotaxis of zoospores of Phytophthora parasitica and Phytophthora citrophthora and on distribution of 14C in citrus tissues and root exudate. Soil Biol. Biochem. 26:75-79.

    Article  CAS  Google Scholar 

  • Dandurand, L. M., Knudsen, G. R., and Schotzko, D. J., 1995, Quantification of Pythium ultimum var. sporangiiferum zoospore encystment patterns using geostatistics. Phytopathology 85:186-190.

    Article  Google Scholar 

  • Dandurand, L. M., D. J. Schotzko, and G. R. Knudsen, 1997, Spatial patterns of rhizoplane populations of Pseudomonas fluorescens. Appl. Environ. Microbiol. 63:3211-3217.

    PubMed  CAS  Google Scholar 

  • Deacon, J. W., and S. P. Donaldson, 1993, Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycol. Res. 97:1153-1171.

    Article  CAS  Google Scholar 

  • Fendorf, S. E., Li, G., Morra, M. J., and Dandurand, L. M., 1997, High-resolution non-destructive imaging of bacterial cells in pure cultures and mineral suspensions. Soil Sci. Soc. J. 61:109-115.

    CAS  Google Scholar 

  • Franklin, R. B., and A. L. Mills, 2003, Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol. Ecol. 44:335-346.

    Article  PubMed  CAS  Google Scholar 

  • Fukui, R., E. I. Poinar, P. H. Bauer, M. N. Schroth, M. Hendson, X. -L. Wang, and J. G. Hancock, 1994, Spatial colonization patterns and interaction of bacteria on inoculated sugar beet seed. Phytopathology 84:1338-1345.

    Article  Google Scholar 

  • Gray, T. R. G., and D. Parkinson, 1968, The Ecology of Soil Bacteria. University of Toronto Press, Toronto, p. 681.

    Google Scholar 

  • Green, H., and D. F. Jensen, 1995, A tool for monitoring Trichoderma harzianum: II. The use of a GUS transformant for ecological studies in the rhizosphere. Phytopathology 85:1436-1440.

    Article  Google Scholar 

  • Green, H., N. Heiberg, K. Lejbølle, and D. Funck Jensen, 2001, The use of a GUS transformant of Trichoderma Harzianum, strain T3a, to study metabolic activity in the spermosphere and rhizosphere related to biocontrol of Pythium damping-off and root rot. Eur. J. Plant Pathol. 107:349-359.

    Article  Google Scholar 

  • Hadar, Y., G. E. Harman, and A. G. Taylor, 1984, Evaluation of Trichoderma koningii and Trichoderma harzianum from New York soils for biological control of seed rot caused by Pythium spp. Phytopathology 74:106-110.

    Article  Google Scholar 

  • Hanski, I., 1991, Single-species metapopulation dynamics: concepts, models and observations. Biol. J. Linn. Soc. 42:73-88.

    Article  Google Scholar 

  • Harman, G. E., Chet, I., and Baker, R., 1980, Trichoderma harzianum effects on seed and seedling disease induced in radish and pea by Pythium spp. or Rhizoctonia solani. Phytopathology 70:1167-11

    Article  Google Scholar 

  • Harrison, S., and J. F. Quinn, 1989, Correlated environments and the persistence of meta-populations. Oikos 56:293-298.

    Article  Google Scholar 

  • Hickman, C. J., and H. H. Ho, 1966, Behavior of zoospores in plant-pathogenic phyco-mycetes. Annu. Rev. Phytopathol. 4:195-220.

    Article  Google Scholar 

  • Hirano, S. S., and C. D. Upper, 1983, Ecology and epidemiology of foliar bacterial plant pathogens. Annu. Rev. Phytopathol. 21:243-269.

    Article  Google Scholar 

  • Hirano, S. S., and C. D. Upper, 1986, Temporal, spatial and genetic variability of leaf-associated bacterial populations, in: Microbiology of the Phyllosphere, N. J. Fokkema and J. Van Den Heuvel, eds., Cambridge University Press, New York, pp. 235-241.

    Google Scholar 

  • Hirano, S. S., and C. D. Upper, 1993, Dynamics, spread, and persistence of a single genotype of Pseudomonas syringae relative to those of its conspecifics on populations of snap bean leaflets. Appl. Environ. Microbiol. 59:1082-1091.

    PubMed  CAS  Google Scholar 

  • Hirano, S. S., E. V. Nordheim, D. C. Arny, and C. D. Upper, 1982, Lognormal distribution of epiphytic bacterial populations on leaf surfaces. Appl. Environ. Microbiol. 44:695-700.

    PubMed  CAS  Google Scholar 

  • Huang, C. -T., F. P. Yu, G. A. McFeters, and P. S. Stewart, 1995, Non-uniform spatial patterns of respiratory activity within biofilm during disinfection. Appl. Environ. Microbiol. 61:2252-2256.

    PubMed  CAS  Google Scholar 

  • Isaaks, E. H., and R. H. Srivastava, 1989, Applied Geostatistics, Oxford University Press, Oxford.

    Google Scholar 

  • Ishimaru, C., K. M. Eskridge, and A. K. Vidaver, 1991, Distribution analysis of naturally occurring epiphytic populations of Xanthomonas campestris p.v. phaseoli on dry beans. Phytopathology 81:262-268.

    Article  Google Scholar 

  • Johnson, D. A., J. R. Alldredge, J. R. Allen, and R. Allwine, 1991, Spatial pattern of downy mildew in hop yards during severe and mild disease epidemics. Phytopathology 81:1369-1374.

    Article  Google Scholar 

  • Jumars, P. A., D. Thistle, and M. L. Jones, 1977, Detecting two-dimensional spatial structure in biological data. Oecologia 8:109-123.

    Article  Google Scholar 

  • Katznelson, H., 1965, Nature and importance of the rhizosphere, in: Ecology of Soil Borne Plant Pathogens - Prelude to Biological Control, K. J. Baker and W. C. Snyder, eds., University of California Press, Berkeley, CA, pp. 187-209.

    Google Scholar 

  • Kemp, W. P., T. M. Kalaris, and W. F. Quimby, 1989, Rangeland grasshopper (Orthoptera: Acrididae) spatial variability: Macroscale population assessment. J. Econ. Entomol. 82: 1270-1276.

    Google Scholar 

  • Kinkle, L. L., M. Wilson, S. E. Lindow, 1995, Effect of sampling scale on the assessment of epiphytic bacterial populations. Microb. Ecol. 29:283-297.

    Article  Google Scholar 

  • Kloepper, J. W., and C. J. Beauchamp, 1992, A review of issues related to measuring colonization of plant roots by bacteria. Can. J. Microbiol. 29:1219-1232.

    Article  Google Scholar 

  • Knudsen, G. R., and L. Bin, 1990, Effects of temperature, soil moisture and wheat bran on growth of Trichoderma harzianum from alginate pellets. Phytopathology 80:724-727.

    Article  Google Scholar 

  • Knudsen, G. R., and D. J. Schotzko, 1991, Simulation of Russian wheat aphid movement and population dynamics on preferred and non-preferred host plants. Ecol. Model. 57:117-131.

    Article  Google Scholar 

  • Knudsen, G. R., M. V. Walter, L. A. Prorteous, V. J. Prince, J. L. Armstrong, and R. J. Seidler, 1988, Predictive model of conjugative plasmid transfer in the rhizsphere and phyllosphere. Appl. Environ. Microbiol. 54:343-347.

    PubMed  CAS  Google Scholar 

  • Knudsen, G. R., D. J. Eschen, L. M. Dandurand, and L. Bin, 1991a, Potential for biocontrol of Sclerotinia sclerotiorum through colonization of sclerotia by Trichoderma harzianum. Plant Dis. 75:466-469.

    Google Scholar 

  • Knudsen, G. R., D. J. Eschen, L. M. Dandurand, and Z. G. Wang, 1991b, Method to enhance growth and sporulation of pelletized biocontrol fungi. Appl. Environ. Microbiol. 57:2864-2867.

    Google Scholar 

  • Legendre, P., 1993, Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659-1673.

    Article  Google Scholar 

  • Legendre, P., and M. -J. Fortin, 1989, Spatial pattern and ecological analysis. Vegetatio 80:107-138.

    Article  Google Scholar 

  • Levin, B. R., F. M. Stewart, and V. A. Rice, 1979, The kinetics of conjugative plasmid transmission: fit of a simple mass action model. Plasmid 2:247-260.

    Article  PubMed  CAS  Google Scholar 

  • Lifshitz, R., M. T. Windham, and R. Baker, 1986, Mechanism of biological control of pre-emergence damping-off of pea by seed treatment with Trichoderma spp. Phytopathology 76:720-725.

    Article  Google Scholar 

  • Lo, C. -T., E. B. Nelson, C. K. Hayes, and G. E. Harman, 1998, Ecological studies of trans-formed Trichoderma harzianum strain 1295-22 in the rhizosphere and on the phylloplane of creeping bentgrass. Phytopathology 88:129-136.

    Article  PubMed  CAS  Google Scholar 

  • Lockwood, L. J., 1981, Exploitation competition, in: The Fungal Community, D. T. Wicklow and G. C. Carroll, eds., Marcell Dekker, New York, pp. 319-349.

    Google Scholar 

  • Loper, J. E., 1988, Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166-172.

    Article  CAS  Google Scholar 

  • Loper, J. E., Suslow, T. V., and Schroth, M. N., 1984, Lognormal distribution of bacterial populations in the rhizosphere. Phytopathology 74:1454-1460.

    Article  Google Scholar 

  • Lumsden, R. D., J. P. Carter, J. M. Whipps, and J. M. Lynch. 1990. Comparison of biomass and viable propagule measurements in the antagonism of Trichoderma harzianum against Pythium ultimum. Soil Biol. Biochem. 22:187-194.

    Article  Google Scholar 

  • McFeters, G. A., F. P. Yu, B. H. Pyle, and P. S. Stewart. 1995. Physiological methods to study disinfection. J. Ind. Microbiol. 15:333-338.

    Article  CAS  Google Scholar 

  • Mandeel, Q., and R. Baker. 1991. Mechanisms involved in biological control of Fusarium wilt on cucumber with strains of non-pathogenic Fusarium oxysporum. Phytopathology 81:462-469.

    Article  Google Scholar 

  • Martin, F. N., and J. T. English. 1997. Population genetics of soilborne fungal plant pathogens. Phytopathology 87:446-447.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, R. T., and Deacon, J. W. 1986. Differential(host-specific) accumulation of zoospores of Pythium on roots of graminaceous and non-graminaceous plants. New Phytol. 102:113-122.

    Article  Google Scholar 

  • Nelson, E. B., G. E. Harman, and G. T. Nash. 1988. Enhancement of Trichoderma-induced biological control of Pythium seed rot and pre-emergence damping-off of peas. Soil Biol. Biochem. 20:145-150.

    Article  CAS  Google Scholar 

  • Newman, E. I., and H. J. Bowen. 1974. Patterns of distribution of bacterial on root surfaces. Soil Biol. Biochem. 6:205-209.

    Article  Google Scholar 

  • Nicot, P. C., D. I. Rouse, and B. S. Yandell. 1984. Comparison of statistical methods for studying spatial patterns of soilborne plant pathogens in the field. Phytopathology 74:1399-1402.

    Article  Google Scholar 

  • Orr, K. A., and G. R. Knudsen. 2004. Use of green fluorescent protein and image analysis to quantify proliferation of Trichoderma harzianum in nonsterile soil. Phytopathology 94:1383-1389.

    Article  PubMed  CAS  Google Scholar 

  • Parberry, I. H., J. F. Brown, and V. J. Bofinger, 1981, Statistical methods in the analysis of phylloplane populations, in: Microbial Ecology of the Phylloplane, J. P. Blakeman, ed., Academic Press, London, pp. 47-65.

    Google Scholar 

  • Parke, J. L. 1990. Population dynamics of Pseudomonas cepacia in the pea spermosphere in relation to biocontrol of Pythium. Phytopathology 80:1307-1311.

    Article  Google Scholar 

  • Richaume, A., D. Steinberg, L. Jocteur-Monrozier, and G. Faurie, 1993. Differences between direct and indirect enumeration of soil bacteria: the influence of soil structure and cell location. Soil Biol. Biochem. 25:641-643.

    Article  Google Scholar 

  • Roberts, I. N., R. P. Oliver, P. J. Punt, and C. A. M. J. J. van den Hondel. 1989. Expression of Escherichia coli. β-glucuronidase gene in industrial and phytopathogenic filamentous fungi. Curr. Genet. 15:177-180.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, G. P. 1987. Geostatistics in ecology: interpolating with known variance. Ecology 68:744-748.

    Article  Google Scholar 

  • Rossi, R. E., D. J. Mulla, A. G. Journel, and E. H. Franz. 1992. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol. Monogr. 62:277-314.

    Article  Google Scholar 

  • Rovira, A. D. 1956. A study of the development of the root surface microflora during the initial stages of plant growth. J. Appl. Bacteriol. 19:72-79.

    Google Scholar 

  • Rovira, A. D. 1973. Zones of exudation along plant roots and spatial distribution of microoorganisms in the rhizosphere. Pestic. Sci. 4:361-366.

    Article  Google Scholar 

  • Royle, D. J., and Hickman, C. J. 1964. Analysis of factors governing in vitro acccumulation of zoospores of Pythium aphanidermatum on roots. I. Behavior of zoospores. Can. J. Microbiol. 10:151-162.

    Article  Google Scholar 

  • Sawyer, A. J. 1989. Inconstancy of Taylor’s B: simulated sampling with different quadrant sizes and spatial distributions. Res. Popul. Ecol. 31:11-24

    Article  Google Scholar 

  • Schroth, M. N., and J. G. Hancock, 1981. Selected topics in biological control. Ann. Rev. Microbiol. 35:453-476.

    Article  CAS  Google Scholar 

  • Schotzko, D. J., and G. R. Knudsen. 1992. Use of geostatistics to evaluate a spatial simulation of Russian wheat aphid (Homoptera: Aphididae) movement behavior on preferred and nonpreferred hosts. Environ. Entomol. 21:1271-1282.

    Google Scholar 

  • Sheen, J., Hwang, S., Niwa, Y., Kobayaski, H., and Galbraith, D. W. 1995. Green-fluorescent protein as a new vital marker in plant cells. Plant J. 8:777-784.

    Article  PubMed  CAS  Google Scholar 

  • Spelling, T., A. Bottin, and R. Kahmann. 1996. Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol. Gen. Genet. 252:503-509.

    Google Scholar 

  • Stanghellini, M. E., and Rasmussen, S. L. 1989. Root prints: a technique for the determination of the in situ spatial distribution of bacteria on the rhizoplane of field-grown plants. Phytopathology 79:1131-1134.

    Article  Google Scholar 

  • Sudarshana, P. 1995. Dynamics of plasmid transfer via conjugation and mobilization in the spermosphere and rhizosphere of pea. Ph.D. thesis, University of Idaho.

    Google Scholar 

  • Tedla, T., and Stanghellini, M. E. 1992. Bacterial population dynamics and interactions with Pythium aphanidermatum in intact rhizosphere soil. Phytopathology 82:652-656.

    Article  Google Scholar 

  • Thomas, D. D., and A. P. Peterson. 1990. Chemotactic auto-aggregation in the water mold Achlya. J. Gen. Microbiol. 52:479-483.

    Google Scholar 

  • Thrane, C., M. Lübeck, H. Green, Y. Degefu, S. Allerup, U. Thrane, and D. F. Jensen. 1995. A tool for monitoring Trichoderma harzianum. I. Transformation with the GUS gene by protoplast technology. Phytopathology 85:1428-1435.

    Article  CAS  Google Scholar 

  • Trangmar, B. B., R. S. Yost, and G. Uehara, 1975, Application of geostatisitics to spatial studies of soil properties, in: Advances in Agronomy, Vol. 38, N. C. Brady, ed., Academic Press, New York, pp. 45-94.

    Google Scholar 

  • Vanden Wymelenberg, A. J., D. Cullen, R. N. Spear, B. Schoenike, and J. H. Andrews, 1997. Expression of green fluorescent protein in Aureobasidium pullulans and quantification of the fungus on leaf surfaces. Biotechniques 23:686-690.

    PubMed  CAS  Google Scholar 

  • Whipps, J. M., 1990, Carbon economy, in: The Rhizosphere, J. M. Lynch, ed., Wiley, Chichester, UK, pp. 59-97.

    Google Scholar 

  • Zhou, T., and Paulitz, T. C. 1993. In vitro and in vivo effects of Pseudomonas spp. on Pythium aphanidermatum: zoospore behavior in exudates and on the rhizoplane of bacteriatreated cucumber roots. Phytopathology 83:872-876.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Knudsen, G.R., Dandurand, LM. (2007). Analysis Of Spatial Patterns Of Rhizoplane Colonization. In: Franklin, R.B., Mills, A.L. (eds) The Spatial Distribution of Microbes in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6216-2_5

Download citation

Publish with us

Policies and ethics