Skip to main content

Spatial Distribution Of Bacteria At The Microscale In Soil

  • Chapter
The Spatial Distribution of Microbes in the Environment

After the discovery of the tremendous bacterial diversity in soil at all spatial scales, numerous studies have been motivated by the fact that soil represents a very large reservoir of various genes. Nevertheless, the organization of bacterial cells at the microscale in the soil fabric has been overlooked, although all functional interactions appearing at the ecosystem level initially intervene at the scale of the bacterial cells. Many microbiological processes are based on encounters between cells, and between cells and substrates, between cells and surfaces. This chapter provides insight into the microscale spatial distribution of bacteria in soil, with a special emphasis on the concepts of microcolonies and microhabitats as structuring elements for these patterns. Keywords: bacterial diversity, soil, spatial organization, microscale, microhabitat

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arber, W., 1995, The generation of variation in bacterial genomes, J. Mol. Evol. 40:7-12.

    Article  CAS  Google Scholar 

  • Bent, S. J., C. L. Gucker, Y. Oda, and L. J. Forney, 2003, Spatial distribution of Rhodo-pseudomonas palustris ecotypes on a local scale, Appl. Environ. Microb. 69:5192-5197.

    Article  CAS  Google Scholar 

  • Bloemberg, G. V., A. H. Wijfjes, G. E. Lamers, N. Stuurman, and B. J. Lugtenberg, 2000, Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities, Mol. Plant Microbe Interact. 13:1170-1176.

    Article  CAS  PubMed  Google Scholar 

  • Bundt, M., F. Widmer, M. Pesaro, J. Zeyer, and P. Blaser, 2001, Preferential flow paths: biological ‘hot spots’ in soils, Soil Biol. Biochem. 33:729-738.

    Article  CAS  Google Scholar 

  • Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, 1994, Green fluorescent protein as a marker for gene expression, Science 263:802-805.

    Article  CAS  PubMed  Google Scholar 

  • Chenu, C., J. Hassink, and J. Bloem, 2001, Short-term changes in the spatial distribution of microorganisms in soil aggregates as affected by glucose addition, Biol. Fert. Soils 34:349-356.

    Article  CAS  Google Scholar 

  • Cho, J. C., and J. M. Tiedje, 2000, Biogeography and degree of endemicity of fluorescentPseudomonas strains in soil, Appl. Environ. Microb. 66:5448-5456.

    Article  CAS  Google Scholar 

  • Daane, L. L., J. A. Molina, E. C. Berry, and M. J. Sadowsky, 1996, Influence of earthworm activity on gene transfer from Pseudomonas fluorescens to indigenous soil bacteria, Appl. Environ. Microb. 62:515-521.

    CAS  Google Scholar 

  • Daane, L. L., J. A. E. Molina, and M. J. Sadowsky, 1997, Plasmid transfer between spatially separated donor and recipient bacteria in earthworm-containing soil microcosms, Appl. Environ. Microb. 63:679-686.

    CAS  Google Scholar 

  • Dechesne, A., C. Pallud, D. Debouzie, J. P. Flandrois, T. M. Vogel, J. P. Gaudet, and G. L. Grundmann, 2003, A novel method for characterizing the microscale 3D spatial distribution of bacteria in soil, Soil Biol. Biochem. 35:1537-1546.

    Article  CAS  Google Scholar 

  • Dechesne, A., C. Pallud, F. Bertolla, and G. L. Grundmann, 2005, Impact of the microscale distribution of a Pseudomonas strain introduced into soil on potential contacts with indigenous bacteria, Appl. Environ. Microb. 71:8123-8131.

    Article  CAS  Google Scholar 

  • Dunbar, J., S. White, and L. Forney, 1997, Genetic diversity through the looking glass: effect of enrichment bias, Appl. Environ. Microb. 63:1326-1331.

    CAS  Google Scholar 

  • El Balkhi, M., F. Mangenot, J. Proth, and G. Kilbertus, 1978, Influence de la percolation d’une solution de saccharose sur la composition qualitative et quantitative de la microflore bactérienne d’un sol, Soil Sci. Plant Nutr. 24:15-25.

    Google Scholar 

  • England, L. S., H. Lee, and J. T. Trevors, 1993, Bacterial survival in soil: effect of clays and protozoa, Soil Biol. Biochem. 25:525-531.

    Article  Google Scholar 

  • Errampalli, D., K. Leung, M. B. Cassidy, M. Kostrzynska, M. Blears, H. Lee, and J. T. Trevors, 1999, Applications of the green fluorescent protein as a molecular marker in environ-mental microorganisms, J. Microbiol. Methods 35:187-199.

    Article  CAS  PubMed  Google Scholar 

  • Felske, A., and A. D. L. Akkermans, 1998, Spatial homogeneity of abundant bacterial 16S rRNA molecules in grassland soils, Microbial Ecol. 36:31-36.

    Article  CAS  Google Scholar 

  • Focht, D. D., 1992, Diffusional constraints on microbial processes in soil, Soil Sci. 154: 300-307.

    Article  Google Scholar 

  • Foster, R. C., 1988, Microenvironments of soil microorganisms, Biol. Fert. Soils 6:189-203.

    Article  Google Scholar 

  • Franklin, R. B., L. K. Blum, A. C. McComb, and A. L. Mills, 2002, A geostatistical analysis of small-scale spatial variability in bacterial abundance and community structure in salt marsh creek bank sediments, FEMS Microbiol. Ecol. 42:71-80.

    Article  CAS  PubMed  Google Scholar 

  • Fulthorpe, R. R., A. N. Rhodes, and J. M. Tiedje, 1998, High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria, Appl. Environ. Microb. 64:1620-1627.

    CAS  Google Scholar 

  • Gaillard, V., C. Chenu, S. Recous, and G. Richard, 1999, Carbon, nitrogen and microbial gradients induced by plant residues decomposing in soil, Eur. J. Soil Sci. 50:567-578.

    Article  Google Scholar 

  • Gammack, S. M., E. Paterson, J. S. Kemp, M. S. Cresser, and K. Killham, 1992, Factors affecting the movement of microorganisms in soils, in: Soil Biochemistry, Vol. 7, G. Stotzky and J. Bollag, eds., Marcel Dekker, New York, pp. 263-305.

    Google Scholar 

  • Gray, T. R. G., P. Baxby, I. R. Hill, and M. Goodfellow, 1968, Direct observation of bacteria in soil, in: The Ecology of Soil Bacteria, T. Gray and D. Parkinson, eds., Liverpool University Press, Liverpool, UK, pp. 171-192.

    Google Scholar 

  • Grundmann, G. L., and D. Debouzie, 2000, Geostatistical analysis of the distribution of NH4+ and NO2--oxidizing bacteria and serotypes at the millimeter scale along a soil transect, FEMS Microbiol. Ecol. 34:57-62.

    CAS  PubMed  Google Scholar 

  • Grundmann, G. L., and P. Normand, 2000, Microscale diversity of the genus Nitrobacter in soil on the basis of analysis of genes encoding rRNA, Appl. Environ. Microb. 66:4543-4546.

    Article  CAS  Google Scholar 

  • Grundmann, G. L., A. Dechesne, F. Bartoli, J. P. Flandrois, J. L. Chasse, and R. Kizungu, 2001, Spatial modeling of nitrifier microhabitats in soil, Soil Sci. Soc. Am. J. 65:1709-1716.

    CAS  Google Scholar 

  • Harms, H., and A. J. Zehnder, 1994, Influence of substrate diffusion on degradation of dibenzo-furan and 3-chlorodibenzofuran by attached and suspended bacteria, Appl. Environ. Microb. 60:2736-2745.

    CAS  Google Scholar 

  • Harris, P. J., 1994, Consequences of the spatial distribution of microbial communities in soil, in: Beyond the Biomass, K. Ritz, et al., eds., Wiley, Chichester, UK, pp. 239-246.

    Google Scholar 

  • Hattori, T., 1967, Microorganisms and soil aggregates as their microhabitat, Bull. Inst. Agr. Res. Tohoku Univ. 18:159-193.

    Google Scholar 

  • Hattori, T., 1973, Microbial Life in the Soil, Marcel Dekker, New York.

    Google Scholar 

  • Hissett, R., and T. R. G. Gray, 1976, Microsites and time changes in soil microbe ecology, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Process, J. Anderson, and A. MacFadyen, eds., Blackwell, Oxford, pp. 23-39.

    Google Scholar 

  • Holden, P. A., and M. K. Firestone, 1997, Soil microorganisms in soil cleanup: how can we improve our understanding? J. Environ. Qual. 26:32-40.

    CAS  Google Scholar 

  • Horner-Devine, M. C., K. M. Carney, and B. J. M. Bohannan, 2004, An ecological perspective on bacterial biodiversity, Proc. Roy. Soc. Lond. B Bio. 271:113-122.

    Article  Google Scholar 

  • Jocteur-Monrozier, L., J. N. Ladd, R. W. Fitzpatrick, R. C. Foster, and M. Rapauch, 1991, Physical properties, mineral and organic components and microbial biomass content of size fractions in soils of contrasting aggregation, Geoderma 50:37-62.

    Article  Google Scholar 

  • Jones, D., and E. Griffiths, 1964, The use of thin soil sections for the study of soil micro-organisms, Plant Soil 20:232-240.

    Article  Google Scholar 

  • Kilbertus, G., 1980, Etude des microhabitats contenus dans les agrégats du sol. Leur relation avec la biomasse bactérienne et la taille des procaryotes présents, Rev. Ecol. Biol. Sol 17:543-557.

    Google Scholar 

  • Lee, N., P. H. Nielsen, K. H. Andreasen, S. Juretschko, J. L. Nielsen, K. H. Schleifer, and M. Wagner, 1999, Combination of fluorescent in situ hybridization and microautoradiography - a new tool for structure-function analyses in microbial ecology, Appl. Environ. Microb. 65:1289-1297.

    CAS  Google Scholar 

  • Li, Y., W. A. Dick, and O. H. Tuovinen, 2003, Evaluation of fluorochromes for imaging bacteria in soil, Soil Biol. Biochem. 35:737-744.

    Article  CAS  Google Scholar 

  • Lünsdorf, H., R. W. Erb, W. R. Abraham, and K. N. Timmis, 2000, ‘Clay hutches’: a novel interaction between bacteria and clay minerals, Environ. Microbiol. 161-168.

    Google Scholar 

  • McArthur, J. V., D. A. Kovacic, and M. H. Smith, 1988, Genetic diversity in natural populations of a soil bacterium across a landscape gradient, Proc. Natl. Acad. Sci. USA 85:9621-9624.

    Article  CAS  PubMed  Google Scholar 

  • Mendes, I. C., and P. J. Bottomley, 1998, Distribution of a population of Rhizobium legumino-sarum bv. trifolii among different size classes of soil aggregates, Appl. Environ. Microb. 64:970-975.

    CAS  Google Scholar 

  • Metting, F. B., 1992, Structure and physiological ecology of soil microbial communities, in: Soil Microbial Ecology: Application in Agricultural and Environmental Management, F. Metting, ed., Marcel Dekker, New York, pp. 3-25.

    Google Scholar 

  • Monier, J. M., and S. E. Lindow, 2003, Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces, Proc. Natl. Acad. Sci. USA 100:15977-15982.

    Article  CAS  PubMed  Google Scholar 

  • Mummey, D. L., and P. D. Stahl, 2004, Analysis of soil whole- and inner-microaggregate bacterial communities, Microbial Ecol. 48:41-50.

    Article  CAS  Google Scholar 

  • Nikin, D. I., and F. Kunc, 1988, Structure of microbial soil associations and some mechanisms of their autoregulation, in: Soil Microbial Associations, V. Vancura and F. Kunc, eds., Elsevier, Amsterdam, pp. 157-190.

    Google Scholar 

  • Nishio, M., and C. Furusaka, 1970, The distribution of nitrifying bacteria in soil aggregates, Soil Sci. Plant Nutr (Tokyo) 16:24-29.

    Google Scholar 

  • Nishio, M., T. Hattori, and C. Furusaka, 1968, The growth of bacteria in sterilized soil aggregates, Rep. Inst. Agr. Res. Tohoku Univ. 19:37-43.

    Google Scholar 

  • Noguez, A. M., H. T. Arita, A. E. Escalante, L. J. Forney, F. Garcia-Oliva, and V. Souza, 2005, Microbial macroecology: highly structured prokaryotic soil assemblages in a tropical deciduous forest, Global Ecol. Biogeogr. 14:241-248.

    Article  Google Scholar 

  • Nunan, N., K. Ritz, D. Crabb, K. Harris, K. J. Wu, J. W. Crawford, and I. M. Young, 2001, Quantification of the in situ distribution of soil bacteria by large-scale imaging of thin sections of undisturbed soil, FEMS Microbiol. Ecol. 37:67-77.

    Article  CAS  Google Scholar 

  • Nunan, N., K. Wu, I. M. Young, J. W. Crawford, and K. Ritz, 2002, In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil, Microbial Ecol. 44:296-305.

    Article  CAS  Google Scholar 

  • Nunan, N., K. J. Wu, I. M. Young, J. W. Crawford, and K. Ritz, 2003, Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil, FEMS Microbiol. Ecol. 44:203-215.

    Article  CAS  PubMed  Google Scholar 

  • Oda, Y., B. Star, L. A. Huisman, J. C. Gottschal, and L. J. Forney, 2003, Biogeography of the purple nonsulfur bacterium Rhodopseudomonas palustris, Appl. Environ. Microb. 69:5186-5191.

    Article  CAS  Google Scholar 

  • Or, D., B. F. Smets, J. M. Wraith, A. Dechesne, and S. P. Friedman, 2007, Physical constraints affecting bacterial habitats and activity in unsaturated porous media - A review, Adv. Water. Res. 30:1505-1527.

    Article  Google Scholar 

  • Pallud, C., A. Dechesne, J. P. Gaudet, D. Debouzie, and G. L. Grundmann, 2004, Modification of spatial distribution of 2,4-dichloro-phenoxyacetic acid degrader microhabitats during growth in soil columns, Appl. Environ. Microb. 70:2709-2716.

    Article  CAS  Google Scholar 

  • Papke, R. T., and D. M. Ward, 2004, The importance of physical isolation to microbial diversification, FEMS Microbiol. Ecol. 48:293-303.

    Article  CAS  PubMed  Google Scholar 

  • Parkin, T. B., 1987, Soil microsites as a source of denitrification variability, Soil Sci. Soc. Am. J. 51:1194-1199.

    Article  CAS  Google Scholar 

  • Parkin, T. B., 1993, Spatial variability of microbial processes in soil - a review, J. Environ. Qual. 22:409-417.

    Article  Google Scholar 

  • Pivetz, B. E., and T. S. Steenhuis, 1995, Soil matrix and macropore biodegradation of 2,4-D, J. Environ. Qual. 24:564-570.

    Article  CAS  Google Scholar 

  • Poly, F., L. Ranjard, S. Nazaret, F. Gourbiere, and L. J. Monrozier, 2001, Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties, Appl. Environ. Microb. 67:2255-2262.

    Article  CAS  Google Scholar 

  • Postma, J., and J. A. Van Veen, 1990, Habitable pore space and survival of Rhizobium legumino-sarum biovar trifolii introduced into soil, Microbial Ecol. 19:149-161.

    Article  Google Scholar 

  • Rainey, P. B., A. Buckling, R. Kassen, and M. Travisano, 2000, The emergence and maintenance of diversity: insights from experimental bacterial populations, Trends Ecol. Evol. 15:243-247.

    Article  PubMed  Google Scholar 

  • Ranjard, L., and A. S. Richaume, 2001, Quantitative and qualitative microscale distribution of bacteria in soil, Res. Microbiol. 152:707-716.

    Article  CAS  PubMed  Google Scholar 

  • Ranjard, L., A. Richaume, L. Jocteur-monrozier, and S. Nazaret, 1997, Response of soil bacteria to Hg(II) in relation to soil characteristics and cell location, FEMS Microbiol. Ecol. 24:321-331.

    Article  CAS  Google Scholar 

  • Recorbet, G., A. Richaume, and L. Jocteur Monrozier, 1995, Distribution of a genetically-engineered Escherichia coli population introduced into soil, Lett. Appl. Microbiol. 21: 38-40.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, R. E., C. A. James, V. K. Bhupathiraju, and L. Alvarez Cohen, 2002, Microbial activity in soils following steam treatment, Biodegradation 13:285-295.

    Article  CAS  PubMed  Google Scholar 

  • Rius, N., M. C. Fuste, C. Guasp, J. Lalucat, and J. G. Loren, 2001, Clonal population structure of Pseudomonas stutzeri, a species with exceptional genetic diversity, J. Bacteriol. 183:736-744.

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch, A., A. Weilharter, H. Gerzabek, H. Kirchmann, and E. Kandeler, 2001, Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment, Appl. Environ. Microb. 67:4215-4224.

    Article  CAS  Google Scholar 

  • Skinner, F. A., 1976, Methods in soil examination, in: Microbiology in Agriculture, Fisheries and Food, F. A. Skinner and J. G. Carr, eds., Academic Press, London, pp. 19-35.

    Google Scholar 

  • Thieme, J., G. Schneider, and C. Knochel, 2003, X-ray tomography of a microhabitat of bacteria and other soil colloids with sub-100 nm resolution, Micron 34:339-344.

    Article  PubMed  Google Scholar 

  • Tombolini, R., D. J. Van Der Gaag, B. Gerhardson, and J. K. Jansson, 1999, Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA 342 on barley seeds visualized by using green fluorescent protein, Appl. Environ. Microb. 65:3674-3680.

    CAS  Google Scholar 

  • Treves, D. S., B. Xia, J. Zhou, and J. M. Tiedje, 2003, A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil, Microbial Ecol. 45:20-28.

    Article  CAS  Google Scholar 

  • Tsuji, T., Y. Kawasaki, S. Takeshima, T. Sekiya, and S. Tanaka, 1995, A new fluorescence staining assay for visualizing living microorganisms in soil, Appl. Environ. Microb. 61:3415-3421.

    CAS  Google Scholar 

  • Vallaeys, T., F. Persello-carteaux, N. Rouard, C. Lors, G. Laguerre, and G. Soulas, 1997, PCR-RFLP analysis of 16S rRNA, tfdA and tfdB genes reveals a diversity of 2,4-D degraders in soil aggregates, FEMS Microbiol. Ecol. 24:269-278.

    Article  CAS  Google Scholar 

  • Vargas, R., and T. Hattori, 1990, The distribution of protozoa among soil aggregates, FEMS. Microbiol. Lett. 74:73-78.

    Article  Google Scholar 

  • Vilas Boas, G., V. Sanchis, D. Lereclus, M. V. Lemos, and D. Bourguet, 2002, Genetic differen-tiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis, Appl. Environ. Microb. 68:1414-1424.

    Article  CAS  Google Scholar 

  • Vogel, J., P. Normand, J. Thioulouse, X. Nesme, and G. L. Grundmann, 2003, Relationship between spatial and genetic distance in Agrobacterium spp. in 1 cubic centimeter of soil, Appl. Environ. Microb. 69:1482-1487.

    Article  CAS  Google Scholar 

  • Vos, M., and G. J. Velicer, 2006, Genetic population structure of the soil bacterium Myxococcus xanthus at the centimeter scale, Appl. Environ. Microb. 72:3615-3625.

    Article  CAS  Google Scholar 

  • Wachinger, G., S. Fiedler, K. Zepp, A. Gattinger, M. Sommer, and K. Roth, 2000, Variability of soil methane production on the micro-scale: spatial association with hot spots of organic material and Archaeal populations, Soil Biol. Biochem. 32:1121-1130.

    Article  CAS  Google Scholar 

  • Yarwood, R. R., M. L. Rockhold, M. R. Niemet, J. S. Selker, and P. J. Bottomley, 2002, Noninvasive quantitative measurement of bacterial growth in porous media under unsaturated-flow conditions, Appl. Environ. Microb. 68:3597-3605.

    Article  CAS  Google Scholar 

  • Zvyagintsev, D. G., 1962, Adsorption of microorganisms to soil particles, Soviet Soil Sci. 140-144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Deschesne, A., Pallud, C., Grundmann, G.L. (2007). Spatial Distribution Of Bacteria At The Microscale In Soil. In: Franklin, R.B., Mills, A.L. (eds) The Spatial Distribution of Microbes in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6216-2_4

Download citation

Publish with us

Policies and ethics