Bacterial Interactions At The Microscale – Linking Habitat To Function In Soil

  • Naoise Nunan
  • Iain M. Young
  • John W. Crawford
  • Karl Ritz

There is a growing body of evidence that the spatial distribution of bacteria and their relationships with other soil features play a significant role in the macroscopic function of soil. In the past this has not been widely appreciated, possibly due to the difficulty of studying soils at scales that are relevant to bacterial communities. This paper reviews the evidence for the influence of microscale interactions on function at larger scales and describes recent methodological advances that allow the microscale spatial distribution of bacterial cells and bacterial activities to be quantified. Approaches for integrating the microscale into models of soil function are briefly discussed as are new techniques that have the potential to improve our understanding of microbial – habitat interactions and of how these are linked to soil function. Keywords: bacterial spatial distribution, microscale, microhabitat, scale, biological thin sections, microsampling


Bacterial Community Microbial Community Structure Soil Aggregate Soil Biol Bacterial Community Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, F. E. S., and R. M. Jackson, 1955, Preparation of sections for study of soil micro-organisms, in: Soil Zoology, D. K. M. Kevan, ed., Butterworth. London, pp. 433-440.Google Scholar
  2. Allison, S. D., 2005, Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments, Ecol. Lett. 8:626-635.Google Scholar
  3. Almås, A. R., J. Mulder, and L. R. Bakken, 2005, Trace metal exposure of soil bacteria depends on their position in the soil matrix, Environ. Sci. Technol. 39:5927-5932.PubMedGoogle Scholar
  4. Altemüller, H., and B. Vliet-Lanoe, 1988, Soil thin section fluorescence microscopy, Devel. Soil Sci. 19:565-579.Google Scholar
  5. Beijerink, M. W., 1913, De infusies en de ontdekking der backteriën. Jaarboek van de Koninklijke Akademie v. Wetenschappen, Müller, Berlin.Google Scholar
  6. Bergstrom, D. W., C. M. Monreal, J. A. Millette, and D. J. King, 1998, Spatial dependence of soil enzyme activities along a slope, Soil Sci. Soc. Am. J. 62:1302-1308.Google Scholar
  7. Bertrand, I., N. Grignon, P. Hinsinger, G. Souche, and B. Jaillard, 2001, The use of secondary ion mass spectrometry coupled with image analysis to identify and locate chemical elements in soil minerals: the example of phosphorus, Scanning 23:279-291.Google Scholar
  8. Bird, N. R. A., E. Perrier, and M. Rieu, 2000, The water retention function for a model of soil structure with pore and solid fractal distributions, Eur. J. Soil Sci. 51:55-63.Google Scholar
  9. Bloem, J., M. Veninga, and J. Shepherd, 1995, Fully-automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser-scanning microscopy and image-analysis, Appl. Environ. Microbiol. 61:926-936.PubMedGoogle Scholar
  10. Bramley, R. G. V., and R. E. White, 1991a, An analysis of variability in the activity of nitrifiers in a soil under pasture. 1. Spatially dependent variability and optimum sampling strategy, Aust. J. Soil Res. 29:95-108.Google Scholar
  11. Bramley, R. G. V., and R. E. White, 1991b, An analysis of variability in the activity of nitrifiers in a soil under pasture. 2. Some problems in the geostatistical analysis of biological soil pro-perties, Aust. J. Soil Res. 29:109-122.Google Scholar
  12. Bruckner, A., E. Kandeler, and C. Kampichler, 1999, Plot-scale spatial patterns of soil water content, pH, substrate-induced respiration and N mineralization in a temperate coniferous forest, Geoderma 93:207-223.Google Scholar
  13. Bruneau, P. M. C., D. A. Davidson, I. C. Grieve, I. M. Young, and N. Nunan, 2005, The effects of soil horizons and faunal excrement on bacterial distribution in an upland grass-land soil, FEMS Microbiol. Ecol. 52:139-144.PubMedGoogle Scholar
  14. Burmølle, M., L. H. Hansen, G. Oregaard, and S. J. Sørensen, 2003, Presence of N-acyl homoserine lactones in soil detected by a whole-cell biosensor and flow cytometry, Microb. Ecol. 45:226-236.PubMedGoogle Scholar
  15. Callow, J. A., M. P. Osborne, M. E. Callow, F. Baker, and A. M. Donald, 2003, Use of environ-mental scanning electron microscopy to image the spore adhesive of the marine alga Enteromorpha in its natural hydrated state, Coll. Surf. B. 27:315-321.Google Scholar
  16. Chenu, C., J. Hassink, and J. Bloem, 2001, Short-term changes in the spatial distribution of microorganisms in soil aggregates as affected by glucose addition, Biol. Fertil. Soils 34:349-356.Google Scholar
  17. Chernin, L. S., M. K. Winson, J. M. Thompson, S. Haran, B. W. Bycroft, I. Chet, P. Williams, and G. S. A. B. Stewart, 1998, Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing, J. Bacteriol. 180:4435-4441.PubMedGoogle Scholar
  18. Cliff, J. B., D. J. Gaspar, P. J. Bottomley, and D. D. Myrold, 2002, Exploration of inorganic C and N assimilation by soil microbes with time-of-flight secondary ion mass spectro-metry, Appl. Environ. Microbiol. 68:4067-4073.PubMedGoogle Scholar
  19. Crawford, J. W., J. A. Harris, K. Ritz, and I. M. Young, 2005, Towards an evolutionary ecology of life in soil, Trends Ecol. Evol. 20:81-87.PubMedGoogle Scholar
  20. Crecchio, C., P. Ruggiero, M. Curci, C. Colombo, G. Palumbo, and G. Stotzky, 2005, Binding of DNA from Bacillus subtilis on montmorillonite-humic acids-aluminum or iron hydroxylpolymers: Effects on transformation and protection against Dnase, Soil Sci. Soc. Am. J. 69:834-841.Google Scholar
  21. Darrah, P. R., R. E. White, and P. H. Nye, 1987, A theoretical consideration of the impli-cations of cell clustering for the prediction of nitrification in soil, Plant Soil. 99:387-400.Google Scholar
  22. Dechesne, A., C. Pallud, D. Debouzie, J. P. Flandrois, T. M. Vogel, J. P. Gaudet, and G. L. Grundmann, 2003, A novel method for characterizing the microscale 3D spatial distribution of bacteria in soil, Soil Biol. Biochem. 35:1537-1546.Google Scholar
  23. Dejonghe, W., J. Goris, S. El Fantroussi, M. Hofte, P. De Vos, W. Verstraete, and E. M. Top, 2000, Effect of dissemination of 2,4-dichlorophen-oxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons, Appl. Environ. Microbiol. 66:3297-3304.PubMedGoogle Scholar
  24. Dröge, M., A. Puhler, and W. Selbitschka, 1999, Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies, Biol. Fertil. Soils 29:221-245.Google Scholar
  25. Durrett, R., and S. Levin, 1997, Allelopathy in spatially distributed populations, J. Theoret. Biol. 185:165-171.Google Scholar
  26. Ettema, C. H., and D. A. Wardle, 2002, Spatial soil ecology, Trends Ecol. Evol. 17:177-183.Google Scholar
  27. Feeney, D. S., J. C. Crawford, T. J. Daniell, P. D. Hallett, N. Nunan, K. Ritz, M. Rivers, and I. M. Young, 2006, 3D micro-organisation of the soil-root-microbe system. Microb. Ecol. 52:151-158.PubMedGoogle Scholar
  28. Fierer, N., J. P. Schimel, and P. A. Holden, 2003, Variations in microbial community com-position through two soil depth profiles, Soil Biol. Biochem. 35:167-176.Google Scholar
  29. Fisk, A. C., S. L. Murphy, and R. L. Tate, 1999, Microscopic observations of bacterial sorption in soil cores, Biol. Fertil. Soils 28:111-116.Google Scholar
  30. Foster, R., and J. Martin, 1981, In situ analysis of soil components of biological origin, Soil Biochem. 5:75-111.Google Scholar
  31. Foster, R., and A. Rovira, 1973, The rhizosphere of wheat roots studied by electron micro-scopy of ultra-thin sections. “Modern methods in the study of microbial ecology”, Bull. Ecol. Res. Comm. Sweden. 17:93-95.Google Scholar
  32. Foster, R., A. Rovira, and T. Cock, 1983, Ultrastructure of the Root-Soil Interface. American Phytopathological Society, St. Paul, Minnesota.Google Scholar
  33. Franklin, R. B., and A. L. Mills, 2003, Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field, FEMS Microbiol. Ecol. 44:335-346.PubMedGoogle Scholar
  34. Franklin, R. B., J. L. Garland, C. H. Bolster, and A. L. Mills, 2001, Impact of dilution on microbial community structure and functional potential: comparison of numerical simula-tions and batch culture experiments, Appl. Environ. Microbiol. 67:702-712.PubMedGoogle Scholar
  35. Fromm, H., K. Winter, J. Filser, R. Hantschel, and F. Beese, 1993, The influence of soil type and cultivation system on the spatial distributions of the soil fauna and microorganisms and their interactions, Geoderma 60:109-118.Google Scholar
  36. Ginovart, M., D. Lopez, and A. Gras, 2005, Individual-based modelling of microbial activity to study mineralization of C and N and nitrification process in soil, Nonlinear Anal. Real World Appl. 6:773-795.Google Scholar
  37. Gojon, A., N. Grignon, P. Tillard, P. Massiot, F. Lefebvre, M. Thellier, and C. Ripoll, 1996, Imaging and microanalysis of N-14 and N-15 by SIMS microscopy in yeast and plant samples, Cell. Mol. Biol. 42:351-360.PubMedGoogle Scholar
  38. Gonzalez, O. J., and D. R. Zak, 1994, A geostatistical analysis of soil properties in a secondary tropical dry forest, St-Lucia, West-Indies, Plant Soil 163:45-54.Google Scholar
  39. Goovaerts, P., and C. N. Chiang, 1993, Temporal persistence of spatial patterns for mineralizable nitrogen and selected soil properties, Soil Sci. Soc. Am. J. 57:372-381.CrossRefGoogle Scholar
  40. Grundmann, G. L., and F. Gourbiere, 1999, A micro-sampling approach to improve the inventory of bacterial diversity in soil, Appl. Soil Ecol. 13:123-126.Google Scholar
  41. Grundmann, G. L., and P. Normand, 2000, Microscale diversity of the genus Nitrobacter in soil on the basis of analysis of genes encoding rRNA, Appl. Environ. Microbiol. 66:4543-4546.PubMedGoogle Scholar
  42. Grundmann, G. L., A. Dechesne, F. Bartoli, J. P. Flandrois, J. L. Chasse, and R. Kizungu, 2001, Spatial modeling of nitrifier microhabitats in soil, Soil Sci. Soc. Am. J. 65:1709-1716.CrossRefGoogle Scholar
  43. Harris, P. J., 1994, Consequences of the spatial distribution of microbial communities in soil, in: Beyond the Biomass, K. Ritz, J. Dighton, and K. E. Giller, eds., British Society of Soil Science, Wiles-Sayce, London, pp. 239-246.Google Scholar
  44. Holden, P. A., M. G. LaMontagne, A. K. Bruce, W. G. Miller, and S. E. Lindow, 2002, Assess-ing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand, Appl. Environ. Microbiol. 68:2509-2518.PubMedGoogle Scholar
  45. Jackson, R. B., and M. M. Caldwell, 1993, The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics, Ecology 74:612-614.Google Scholar
  46. Johnson, A., I. M. Roy, G. P. Matthews, and D. Patel, 2003, An improved simulation of void structure, water retention and hydraulic conductivity in soil with the Pore-Cor three-dimensional network, Eur. J. Soil Sci. 54:477-489.Google Scholar
  47. Jones, D., and Griffiths, E., 1964, The use of thin sections for the study of soil micro-organisms, Plant Soil 20:232-240.Google Scholar
  48. Kampichler, C., and M. Hauser, 1993, Roughness of soil pore surface and its effect on available habitat space of microarthropods, Geoderma 56:223-232.Google Scholar
  49. Kerr, B., M. A. Riley, M. W. Feldman, and B. J. M. Bohannan, 2002, Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors, Nature 418:171-174.PubMedGoogle Scholar
  50. Klironomos, J. N., M. C. Rillig, and M. F. Allen, 1999, Designing below-ground field experi-ments with the help of semi-variance and power analyses, Appl. Soil Ecol. 12:227-238.Google Scholar
  51. Knorr, W., I. C. Prentice, J. I. House, and E. A. Holland, 2005, Long-term sensitivity of soil carbon turnover to warming, Nature 433:298-301.PubMedGoogle Scholar
  52. Lazof, D., R. W. Linton, R. J. Volk, and T. W. Rufty, 1992, The application of SIMS to nutrient tracer studies in plant physiology, Biol. Cell. 74:127-134.Google Scholar
  53. Levin, S. A., 1992, The problem of pattern and scale in ecology, Ecology 73:1943-1967.Google Scholar
  54. Levin, S. A., 1998, Ecosystems and the biosphere as complex adaptive systems, Ecosystems 1:431-436.Google Scholar
  55. Long, T., and D. Or, 2005, Aquatic habitats and diffusion constraints affecting microbial coexistence in unsaturated porous media, Water Resour. Res. 41:W08408.Google Scholar
  56. Macnaughton, S. J., T. Booth, T. M. Embley, and A. G. O’Donnell, 1996, Physical stabiliza-tion and confocal microscopy of bacteria on roots using 16S rRNA targeted, fluorescent-labeled oligonucleotide probes, J. Microbiol. Methods 26:279-285.Google Scholar
  57. Madden, L. V., and G. Hughes, 1999, An effective sample size for predicting plant disease incidence in a spatial hierarchy, Phytopathology 89:770-781.PubMedGoogle Scholar
  58. Marx, M. C., E. Kandeler, M. Wood, N. Wermbter, and S. C. Jarvis, 2005, Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions, Soil Biol. Biochem. 37:35-48.Google Scholar
  59. Mummey, D. L., and P. D. Stahl, 2004, Analysis of soil whole- and inner-microaggregate bacterial communities, Microb. Ecol. 48:41-50.PubMedGoogle Scholar
  60. Nunan, N., K. Ritz, D. Crabb, K. Harris, K. J. Wu, J. W. Crawford, and I. M. Young, 2001, Quantification of the in situ distribution of soil bacteria by large-scale imaging of thin sections of undisturbed soil, FEMS Microbiol. Ecol. 37:67-77.Google Scholar
  61. Nunan, N., K. Wu, I. M. Young, J. W. Crawford, and K. Ritz, 2002, In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil, Microb. Ecol. 44:296-305.PubMedGoogle Scholar
  62. Nunan, N., K. J. Wu, I. M. Young, J. W. Crawford, and K. Ritz, 2003, Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil, FEMS Microbiol. Ecol. 44:203-215.PubMedGoogle Scholar
  63. Nunan, N., K. Ritz, M. Rivers, D. S. Feeney, and I. M. Young, 2006, Investigating microbial micro-habitat structure using x-ray computed tomography, Geoderma 133:398-407.Google Scholar
  64. Okabe, H., and M. J. Blunt, 2004, Prediction of permeability for porous media reconstructed using multiple-point statistics, Phys. Rev. E 70:066135.Google Scholar
  65. Pallud, C., A. Dechesne, J. P. Gaudet, D. Debouzie, and G. L. Grundmann, 2004, Modification of spatial distribution of 2,4-dichloro-phenoxyacetic acid degrader microhabitats during growth in soil columns, Appl. Environ. Microbiol. 70:2709-2716.PubMedGoogle Scholar
  66. Parkin, T. B., 1993, Spatial variability of microbial processes in soil - a review, J. Environ. Qual. 22:409-417.CrossRefGoogle Scholar
  67. Parkin, T. B., and D. R. Shelton, 1992, Spatial and temporal variability of carbofuran degradation in soil, J. Environ. Qual. 21:672-678.CrossRefGoogle Scholar
  68. Peat, D. M. W., G. P. Matthews, P. J. Worsfold, and S. C. Jarvis, 2000, Simulation of water retention and hydraulic conductivity in soil using a three-dimensional network, Eur. J. Soil Sci. 51:65-79.Google Scholar
  69. Pierson, E. A., D. W. Wood, J. A. Cannon, F. M. Blachere, and L. S. Pierson, 1998, Inter-population signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizo-sphere, Mol. Plant Microbe Interact. 11:1078-1084.Google Scholar
  70. Postma, J., and H. J. Altemüller, 1990, Bacteria in thin soil sections stained with the fluorescent brightener Calcofluor White M2R, Soil Biol. Biochem. 22:89-96.Google Scholar
  71. Protz, R., S. J. Sweeney, and C. A. Fox, 1992, An application of spectral image-analysis to soil micromorphology. 1. Methods of analysis, Geoderma 53:275-287.Google Scholar
  72. Ranjard, L., S. Nazaret, F. Gourbiere, J. Thioulouse, P. Linet, and A. Richaume, 2000a, A soil microscale study to reveal the heterogeneity of Hg(II) impact on indigenous bacteria by quantification of adapted phenotypes and analysis of community DNA fingerprints, FEMS Microbiol. Ecol. 31:107-115.Google Scholar
  73. Ranjard, L., F. Poly, J. Combrisson, A. Richaume, F. Gourbiere, J. Thioulouse, and S. Nazaret, 2000b, Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA), Microb. Ecol. 39:263-272.Google Scholar
  74. Rappoldt, C., and J. W. Crawford, 1999, The distribution of anoxic volume in a fractal model of soil, Geoderma 88:329-347.Google Scholar
  75. Ritz, K., W. McNicol, N. Nunan, S. Grayston, P. Millard, D. Atkinson, A. Gollotte, D. Habeshaw, B. Boag, C. D. Clegg, B. S. Griffiths, R. E. Wheatley, L. A. Glover, A. E. McCaig, and J. I. Prosser, 2004, Spatial structure in soil chemical and microbiological properties in an upland grassland, FEMS Microbiol. Ecol. 49:191-205.PubMedGoogle Scholar
  76. Robertson, G. P., and K. L. Gross, 1994, Assessing the heterogeneity of belowground resources: quantifying pattern and scale, in: Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above- and Belowground, M. M. Caldwell, and R. W. Pearcy (eds.), Academic Press, New York, pp. 237-253.Google Scholar
  77. Robertson, G. P., K. Klingensmith, M. Klug, E. Paul, J. Crum, and B. Ellis, 1997, Soil resources, microbial activity, and primary production across an agricultural ecosystem, Ecol. Appl. 7:158-170.Google Scholar
  78. Ronn, R., B. S. Griffiths, F. Ekelund, and S. Christensen, 1996, Spatial distribution and succes-sional pattern of microbial activity and micro-faunal populations on decomposing barley roots, J. Appl. Ecol. 33:662-672.Google Scholar
  79. Saetre, P., and E. Bååth, 2000, Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand, Soil Biol. Biochem. 32:909-917.Google Scholar
  80. Sexstone, A., N. Revsbech, T. Parkin, and J. Tiedje, 1985, Direct measurement of oxygen profiles and denitrification rates in soil aggregates, Soil Sci. Soc. Am. J. 49:645-651.CrossRefGoogle Scholar
  81. Stoyan, H., H. De Polli, S. Bohm, G. P. Robertson, and E. A. Paul, 2000, Spatial hetero-geneity of soil respiration and related properties at the plant scale, Plant Soil 222:203-214.Google Scholar
  82. Strong, D. T., P. W. G. Sale, and K. R. Helyar, 1997, Initial soil pH affects the pH at which nitrification ceases due to self-induced acidification of microbial microsites, Aus. J. Soil Res. 35:565-570.Google Scholar
  83. Thieme, J., G. Schneider, and C. Knochel, 2003, X-ray tomography of a microhabitat of bacteria and other soil colloids with sub-100 nm resolution, Micron. 34:339-344.PubMedGoogle Scholar
  84. Tippkötter, R., 1990, Staining of soil microorganisms and related materials with fluoro-chromes, in: Soil Micromorphology: A Basic and Applied Science, L. A. Douglas (ed.), Elsevier, Amsterdam, pp. 605-611.Google Scholar
  85. Tippkötter, R., and K. Ritz, 1996, Evaluation of polyester, epoxy and acrylic resins for suitability in preparation of soil thin sections for in situ biological studies, Geoderma 69:31-57.Google Scholar
  86. Tippkötter, R., K. Ritz, and J. F. Darbyshire, 1986, The preparation of soil thin sections for biological studies, J. Soil Sci. 77:681-690.Google Scholar
  87. Top, E. M., and D. Springael, 2003, The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds, Curr. Opin. Biotechnol. 14:262-269.PubMedGoogle Scholar
  88. Top, E. M., P. Van Daele, N. De Saeyer, and L. J. Forney, 1998, Enhancement of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation in soil by dissemination of catabolic plasmids, Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 73:87-94.Google Scholar
  89. Treves, D. S., B. Xia, J. Zhou, and J. M. Tiedje, 2003, A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil, Microb. Ecol. 45:20-28.PubMedGoogle Scholar
  90. Tsuji, T., Y. Kawasaki, S. Takeshima, T. Sekiya, and S. Tanaka, 1995, A new fluorescence staining assay for visualizing living microorganisms in soil, Appl. Environ. Microbiol. 61:3415-3421.PubMedGoogle Scholar
  91. Velthof, G. L., S. C. Jarvis, A. Stein, A. G. Allen, and O. Oenema, 1996, Spatial variability of nitrous oxide fluxes in mown and grazed grasslands on a poorly drained clay soil, Soil Biol. Biochem. 28:1215-1225.Google Scholar
  92. Vieublé-Gonod, L., J. Chadoeuf, and C. Chenu, 2006, Spatial distribution of microbial 2,4-Dichlorophenoxy acetic acid mineralization from field to microhabitat scales, Soil Sci. Soc. Am. J. 70:64-71.Google Scholar
  93. Vogel, H. J., and K. Roth, 1998, A new approach for determining effective soil hydraulic functions, Eur. J. Soil Sci. 49:547-556.Google Scholar
  94. Vogel, H. J., and K. Roth, 2001, Quantitative morphology and network representation of soil pore structure, Adv. Water Resour. 24:233-242.Google Scholar
  95. Warrick, A. W., and D. E. Myers, 1987, Optimization of sampling locations for variogram calculations, Water Resour. Res. 23:496-500.Google Scholar
  96. Wheatley, R. E., 2002, The consequences of volatile organic compound mediated bacterial and fungal interactions, Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 81:357-364.Google Scholar
  97. White, D., E. A. Fitzpatrick, and K. Killham, 1994, Use of stained bacterial inocula to assess spatial-distribution after introduction into soil, Geoderma 63:245-254.Google Scholar
  98. Whitehead, N. A., A. M. L. Barnard, H. Slater, N. J. L. Simpson, and G. P. C. Salmond, 2001, Quorum-sensing in gram-negative bacteria, FEMS Microbiol. Rev. 25:365-404.PubMedGoogle Scholar
  99. Williamson, K. E., M. Radosevich, and K. E. Wommack, 2005, Abundance and diversity of viruses in six Delaware soils, Appl. Environ. Microbiol. 71:3119-3125.PubMedGoogle Scholar
  100. Wright, D. A., K. Killham, L. A. Glover, and J. I. Prosser, 1995, Role of pore-size location in determining bacterial-activity during predation by protozoa in soil, Appl. Environ. Microbiol. 61:3537-3543.PubMedGoogle Scholar
  101. Wu, K. J., N. Nunan, J. W. Crawford, I. M. Young, and K. Ritz, 2004, An efficient Markov chain model for the simulation of heterogeneous soil structure, Soil Sci. Soc. Am. J. 68:346-351.CrossRefGoogle Scholar
  102. Young, I. M., and J. W. Crawford, 2001, Protozoan life in a fractal world, Protist 152:123-126.PubMedGoogle Scholar
  103. Young, I. M., and J. W. Crawford, 2004, Interactions and self-organization in the soil-microbe complex, Science 304:1634-1637.PubMedGoogle Scholar
  104. Young, I. M., and K. Ritz, 1998, Can there be a contemporary ecological dimension to soil biology without a habitat? Soil Biol. Biochem. 30:1229-1232.Google Scholar
  105. Young, I. M., and K. Ritz, 2000, Tillage, habitat space and function of soil microbes, Soil Till. Res. 53:201-213.Google Scholar
  106. Young, I. M., and K. Ritz, 2005, The habitat of soil microbes, in: Biological Diversity and Function in Soils, R. D. Bardgett, M. B. Usher, and D. W. Hopkins eds., Cambridge University Press, Cambridge, pp. 31-43.Google Scholar
  107. Young, I. M., J. W. Crawford, and C. Rappoldt, 2001, New methods and models for characterising structural heterogeneity of soil, Soil Till. Res. 61:33-45.Google Scholar
  108. Zhou, J. Z., B. C. Xia, D. S. Treves, L. Y. Wu, T. L. Marsh, R. V. O’Neill, A. V. Palumbo, and J. M. Tiedje, 2002, Spatial and resource factors influencing high microbial diversity in soil, Appl. Environ. Microbiol. 68:326-334.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Naoise Nunan
    • 1
  • Iain M. Young
    • 2
  • John W. Crawford
    • 2
  • Karl Ritz
    • 3
  1. 1.CNRS, BioEMCo, Bât. EGERCentre INRA-INAPGFrance
  2. 2.SIMBIOS CenterUniversity of Abertay DundeeUK
  3. 3.National Soil Resources InstituteCranfield UniversityUK

Personalised recommendations