Skip to main content

Statistical Analysis Of Spatial Structure In Microbial Communities

Overview of methods and approaches

  • Chapter

This chapter provides a review of the basic statistical techniques used to detect and quantify spatial structure in ecological data as they can be applied to the analysis of microbial communities. It also discusses the general implications of spatial structure in data analysis, including the inappropriate use of parametric statistical tests with spatially autocorrelated data, and suggests possible alternative procedures. Methods discussed include geostatistics and variogram analysis, kriging, correlograms, Mantel and partial Mantel tests, and time-series analysis. Keywords: spatial structure, microbial communities, statistical analysis, autocorrelation, geostatistics, kriging, scale, spatial autocorrelation

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becker, J. M., T. Parkin, C. H. Nakatsu, J. D. Wilbur, and A. Konopka, 2006, Bacterial activity, community structure, and centimeter-scale spatial heterogeneity in contaminated soil, Microb. Ecol. 51:220-231.

    Article  PubMed  Google Scholar 

  • Beliaeff, B., and M. L. Cochard, 1995, Applying geostatistics to identification of spatial patterns of fecal contamination in a mussel farming area (Havre De La Vanlee, France), Water Res. 29:1541-1548.

    Article  CAS  Google Scholar 

  • Bonham, C. D., and R. M. Reich, 1999, Influence of spatial autocorrelation on a fixed-effect model used to evaluate treatment of oil spills, Appl. Math. Comput. 106:149-162.

    Article  Google Scholar 

  • Bradshaw, G. A., and T. A. Spies, 1992, Characterizing canopy gap structure in forests using wavelet analysis, J. Ecol. 80:205-215.

    Article  Google Scholar 

  • Brockman, F. J., and C. J. Murray, 1997, Microbiological heterogeneity in the terrestiral subsurface and approaches for its description, in: Microbiology of the Terrestrial Deep Subsurface, P. S. Amy and D. H. Haldeman, eds., CRC Press, Boca Raton, FL, pp. 72-102.

    Google Scholar 

  • Castrignanò, A., L. Giugliarini, R. Risaliti, and N. Martinelli, 2000, Study of spatial relation-ships among some soil physico-chemical properties of a field in central Italy using multi-variate geostatistics, Geoderma 97:39-60.

    Article  Google Scholar 

  • Cavigelli, M. A., G. P. Robertson, and M. J. Klug, 1995, Fatty-acid methyl-ester (FAME) profiles as measures of soil microbial community structure, Plant Soil. 170:99-113.

    Article  CAS  Google Scholar 

  • Clark, P. J., and F. C. Evans, 1954, Distance to nearest neighbor as a measurement of spatial relationships in populations, Ecology 35:445-453.

    Article  Google Scholar 

  • Cliff, A. D., and J. K. Ord, 1981, Spatial Processes: Models and Applications. Pion, London.

    Google Scholar 

  • Cressie, N. A. C., 1993, Statistics for Spatial Data. Wiley, New York.

    Google Scholar 

  • Dale, M. R. T., and M. J. Fortin, 2002, Spatial autocorrelation and statistical tests in ecology, Ecoscience 9:162-167.

    Google Scholar 

  • Dale, M. R. T., and M. Mah, 1998, The use of wavelets for spatial pattern analysis in ecology, J. Veg. Sci. 9:805-814.

    Article  Google Scholar 

  • Dandurand, L. M., G. R. Knudsen, and D. J. Schotzko, 1995, Quantification of Pythium-ultimum Var Sporangiiferum zoospore encystment patterns using geostatistics, Phytopathology 85:186-190.

    Article  Google Scholar 

  • Dandurand, L. M., D. J. Schotzko, and G. R. Knudsen, 1997, Spatial patterns of rhizoplane populations of Pseudomonas fluorescens, Appl. Environ. Microbiol. 63:3211-3217.

    PubMed  CAS  Google Scholar 

  • Diggle, P. J., 1983, Statistical Analysis of Spatial Point Patterns. Academic Press, New York.

    Google Scholar 

  • Dobermann, A., P. Goovaerts, and T. George, 1995, Sources of soil variation in an acid Ultisol of the Philippines, Geoderma 68:173-191.

    Article  CAS  Google Scholar 

  • Dungan, J. L., J. N. Perry, M. R. T. Dale, P. Legendre, S. Citron-Pousty, M. J. Fortin, A. Jakomulska, M. Miriti, and M. S. Rosenberg, 2002, A balanced view of scale in spatial statistical analysis, Ecography 25:626-640.

    Article  Google Scholar 

  • Dutilleul, P., 1993, Spatial heterogeneity and the design of ecological field experiments, Ecology 74:1646-1658.

    Article  Google Scholar 

  • Dutilleul, P., 1998, Incorporating scale in ecological experiments: study design, in: Ecological Scale: Theory and Applications, D. L. Peterson and V. T. Parker, eds., Columbia University Press, New York, pp. 369-386.

    Google Scholar 

  • Englund, E., and A. Sparks, 1991, GEOEAS 1.2.1.: Geostatistical Environmental Assessment Software User’s Guide EPA 600/8-91/008, Environmental Monitoring Systems Laboratory, United States Environmental Protection Agency.

    Google Scholar 

  • Escudero, A., J. M. Iriondo, and M. E. Torres, 2003, Spatial analysis of genetic diversity as a tool for plant conservation, Biol. Conserv. 113:351-365.

    Article  Google Scholar 

  • Ettema, C. H., and D. A. Wardle, 2002, Spatial soil ecology, Trends Ecol. Evol. 17:177-183.

    Google Scholar 

  • Ford, E. D., and E. Renshaw, 1984, The interpretation of process from pattern using two-dimensional spectral-analysis - Modeling single species patterns in vegetation, Vegetatio 56:113-123.

    Google Scholar 

  • Fortin, M. J., P. Drapeau, and P. Legendre, 1989, Spatial auto-correlation and sampling design in plant ecology, Vegetatio 83:209-222.

    Article  Google Scholar 

  • Franklin, R. B., and A. L. Mills, 2003, Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field, FEMS Microbiol. Ecol. 44:335-346.

    Article  PubMed  CAS  Google Scholar 

  • Franklin, R. B., L. K. Blum, A. C. McComb, and A. L. Mills, 2002, A geostatistical analysis of small-scale spatial variability in bacterial abundance and community structure in salt marsh creek bank sediments, FEMS Microbiol. Ecol. 42:71-80.

    Article  PubMed  CAS  Google Scholar 

  • Franks, P. J. S., 2005, Plankton patchiness, turbulent transport and spatial spectra, Mar. Ecol. Prog. Ser. 294:295-309.

    Article  Google Scholar 

  • Geary, R. C., 1954, The contiguity ratio and statistical mapping, Incorp. Statist. 5:115-145.

    Article  Google Scholar 

  • Gilbert, R. O., 1987, Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Goovaerts, P., 1997, Geostatistics for Natural Resources Evaluation. Oxford University Press, New York.

    Google Scholar 

  • Goovaerts, P., 1998, Geostatistical tools for characterizing the spatial variability of micro-biological and physico-chemical soil properties, Biol. Fertil. Soils 27:315-334.

    Article  CAS  Google Scholar 

  • Goovaerts, P., 1999, Geostatistics in soil science: state-of-the-art and perspectives, Geoderma 89:1-45.

    Article  Google Scholar 

  • Griffith, D. A., 1978, A spatially adjusted ANOVA model, Geogr. Anal. 10:296-301.

    Google Scholar 

  • Grundmann, G. L., and D. Debouzie, 2000, Geostatistical analysis of the distribution of NH4+ and NO2−-oxidizing bacteria and serotypes at the millimeter scale along a soil transect, FEMS Microbiol. Ecol. 34:57-62.

    PubMed  CAS  Google Scholar 

  • Haining, R., 1993, Spatial Data Analysis in the Social and Environmental Sciences. Cambridge University Press, Cambridge.

    Google Scholar 

  • Halvorson, J. J., H. Bolton, J. L. Smith, and R. E. Rossi, 1994, Geostatistical analysis of resource islands under Artemisia Tridentata in the shrub-steppe, Gt. Basin Nat. 54:313-328.

    Google Scholar 

  • Halvorson, J. J., J. L. Smith, H. Bolton, and R. E. Rossi, 1995, Evaulating shrub-associated spatial patterns of soil properites in a shrub-steppe ecosystem using multiple-variable geostatistics, Soil Sci. Soc. Am. J. 59:1476-1487.

    CAS  Google Scholar 

  • Hoosbeek, M. R., A. Stein, H. van Reuler, and B. H. Janssen, 1998, Interpolation of agronomic data from plot to field scale: using a clustered versus a spatially randomized block design, Geoderma 81:265-280.

    Article  Google Scholar 

  • Isaaks, E. H., and R. M. Srivastava, 1989, An Introduction to Applied Geostatistics. Oxford University Press, New York.

    Google Scholar 

  • Journel, A. G., and C. J. Huijbregts, 1978, Mining Geostatistics. Academic Press, London.

    Google Scholar 

  • Keitt, T. H., and D. L. Urban, 2005, Scale-specific inference using wavelets, Ecology 86:2497-2504.

    Article  Google Scholar 

  • Legendre, P., 1993, Spatial autocorrelation - trouble or new paradigm, Ecology 74:1659-1673.

    Article  Google Scholar 

  • Legendre, P., and M. -J. Fortin, 1989, Spatial pattern and ecological analysis, Vegetatio 80:107-138.

    Article  Google Scholar 

  • Legendre, P., and L. Legendre, 1998, Numerical Ecology, 2nd Edition. Elsevier Scientific, Amsterdam.

    Google Scholar 

  • Legendre, P., N. L. Oden, R. R. Sokal, A. Vaudor, and J. Kim, 1990, Approximate analysis of variance of spatially autocorrelated regional data, J. Class. 7:53-75.

    Article  Google Scholar 

  • Legendre, P., M. R. T. Dale, M. J. Fortin, J. Gurevitch, M. Hohn, and D. Myers, 2002, The consequences of spatial structure for the design and analysis of ecological field surveys, Ecography 25:601-615.

    Article  Google Scholar 

  • Legendre, P., M. R. T. Dale, M. J. Fortin, P. Casgrain, and J. Gurevitch, 2004, Effects of spatial structures on the results of field experiments, Ecology 85:3202-3214.

    Article  Google Scholar 

  • Levin, S. A., 1992, The problem of pattern and scale in ecology, Ecology 73:1943-1967.

    Article  Google Scholar 

  • Lilleskov, E. A., T. D. Bruns, T. R. Horton, D. L. Taylor, and P. Grogan, 2004, Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities, FEMS Microbiol. Ecol. 49:319-332.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, J. A., and J. F. Reynolds, 1988, Statistical ecology: a primer on methods and computing. Wiley, New York.

    Google Scholar 

  • Mackas, D. L., 1984, Spatial autocorrelation of plankton community composition in a continental shelf ecosystem, Limnol. Oceanogr. 29:451-471.

    Article  Google Scholar 

  • Mantel, N., 1967, The detection of disease clustering and a generalized regression approach, Cancer Res. 27:209-220.

    PubMed  CAS  Google Scholar 

  • Manz, W., G. Arp, G. Schumann-Kindel, U. Szewzyk, and J. Reitner, 2000, Widefield de-convolution epifluorescence microscopy combined with fluorescence in situ hybridiza-tion reveals the spatial arrangement of bacteria in sponge tissue, J. Microbiol. Methods 40:125-134.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. R., M. G. Turner, E. A. H. Smithwick, C. L. Dent, and E. H. Stanley, 2004, Spatial extrapolation: The science of predicting ecological patterns and processes, Bioscience 54:310-320.

    Article  Google Scholar 

  • Moran, P. A., 1950, Notes on continuous stochastic phenomena, Biometrika. 37:17-23.

    PubMed  CAS  Google Scholar 

  • Morris, S. J., 1999, Spatial distribution of fungal and bacterial biomass in southern Ohio hardwood forest soils: fine scale variability and microscale patterns, Soil Biol. Biochem. 31:1375-1386.

    Article  CAS  Google Scholar 

  • Mottonen, M., E. Jarvinen, T. J. Hokkanen, T. Kuuluvainen, and R. Ohtonen, 1999, Spatial distribution of soil ergosterol in the organic layer of a mature Scots pine (Pinus sylvestris L.) forest, Soil Biol. Biochem. 31:503-516.

    Article  CAS  Google Scholar 

  • Murray, C. J., 2001, Sampling and data analysis for environmental microbiology, in: Manual of Environmental Microbiology, C. J. Hurst, R. L. Crawford, G. R. Knudsen, M. J. McInerney, and L. D. Stetzenbach, eds., American Society for Microbiology Press, Washington, DC, pp. 166-177.

    Google Scholar 

  • Nunan, N., K. Ritz, D. Crabb, K. Harris, K. J. Wu, J. W. Crawford, and I. M. Young, 2001, Quantification of the in situ distribution of soil bacteria by large-scale imaging of thin sections of undisturbed soil, FEMS Microbiol. Ecol. 37:67-77.

    Article  CAS  Google Scholar 

  • Nunan, N., K. J. Wu, I. M. Young, J. W. Crawford, and K. Ritz, 2003, Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil, FEMS Microbiol. Ecol. 44:203-215.

    Article  PubMed  CAS  Google Scholar 

  • Oberrath, R., and K. Bohning-Gaese, 2001, The Signed Mantel test to cope with auto-correlation in comparative analyses, J. Appl. Stat. 28:725-736.

    Article  Google Scholar 

  • Oden, N. L., and R. R. Sokal, 1986, Directional autocorrelation: an extension of spatial correlograms in two directions, Syst. Zool. 35:608-617.

    Article  Google Scholar 

  • O’Neill, R. V., and A. W. King, 1998, Homage to St. Michael; or, why are there so many books on scale?, in: Ecological Scale: Theory and Applications, D. L. Peterson and V. T. Parker, eds., Columbia University Press, New York, pp. 3-15.

    Google Scholar 

  • Parkin, T. B., 1987, Soil Microsites as a source of denitrification variability, Soil Sci. Soc. Am. J. 51:1194-1199.

    Article  CAS  Google Scholar 

  • Pennanen, T., E. Liski, E. Baath, V. Kitunen, J. Uotila, C. J. Westman, and H. Fritze, 1999, Structure of the microbial communities in coniferous forest soils in relation to site fertility and stand development stage, Microb. Ecol. 38:168-179.

    Article  PubMed  Google Scholar 

  • Pielou, E. C., 1977, An Introduction to Mathematical Ecology, 2nd Edition. Wiley-Interscience, New York.

    Google Scholar 

  • Piontkovski, S. A., R. Williams, W. T. Peterson, O. A. Yunev, N. I. Minkina, V. L. Vladimirov, and A. Blinkov, 1997, Spatial heterogeneity of the planktonic fields in the upper mixed layer of the open ocean, Mar. Ecol. Prog. Ser. 148:145-154.

    Article  Google Scholar 

  • Platt, T., and K. L. Denman, 1975, Spectral analysis in ecology, Annu. Rev. Ecol. Syst. 6:189-210.

    Article  Google Scholar 

  • Renshaw, E., and E. D. Ford, 1984, The description of spatial pattern using two-dimensional spectral-analysis, Vegetatio 56:75-85.

    Google Scholar 

  • Ripley, B. D., 1976, The second order analysis of stationary point processes, J. Appl. Probab. 13:255-266.

    Article  Google Scholar 

  • Ripley, B. D., 1981, Spatial Statistics. Wiley, New York.

    Book  Google Scholar 

  • Robertson, G. P., 1987, Geostatistics in ecology: interpolating with known variance, Ecology 68:744-748.

    Article  Google Scholar 

  • Robertson, G. P., and D. W. Freckman, 1995, The spatial-distribution of nematode trophic groups across a cultivated ecosystem, Ecology 76:1425-1432.

    Article  Google Scholar 

  • Robertson, G. P., K. M. Klingensmith, M. J. Klug, E. A. Paul, J. R. Crum, and B. G. Ellis, 1997, Soil resources, microbial activity, and primary production across an agricultural ecosystem, Ecol. Appl. 7:158-170.

    Article  Google Scholar 

  • Rossi, J. -P., 1996, Statistical tool for soil biology. XI. Autocorrelogram and Mantel test, Eur. J. Soil Biol. 32:195-203.

    Google Scholar 

  • Rossi, R. E., D. J. Mulla, A. G. Journel, and E. H. Franz, 1992, Geostatistical tools for modeling and interpreting ecological spatial dependence, Ecol. Monogr. 62:277-314.

    Article  Google Scholar 

  • Saetre, P., 1999, Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand, Ecography 22:183-192.

    Article  Google Scholar 

  • Saetre, P., and E. Baath, 2000, Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand, Soil Biol. Biochem. 32:909-917.

    Article  CAS  Google Scholar 

  • Schlesinger, W. H., J. A. Raikes, A. E. Hartley, and A. E. Cross, 1996, On the spatial pattern of soil nutrients in desert ecosystems, Ecology 77:364-374.

    Article  Google Scholar 

  • Schneider, D. C., 1994, Quantitative Ecology - Spatial and Temporal Scaling. Academic Press, San Diego.

    Google Scholar 

  • Seuront, L., F. Schmitt, Y. Lagadeuc, D. Schertzer, and S. Lovejoy, 1999, Universal multi-fractal analysis as a tool to characterize multiscale intermittent patterns: example of phyto-plankton distribution in turbulent coastal waters, J. Plankton Res. 21:877-922.

    Article  Google Scholar 

  • Smith, J. L., J. J. Halvorson, and H. J. Bolton, 1994, Spatial relationships of soil microbial biomass and C and N mineralization in a semi-arid shrub-steppe ecosystem, Soil Biol. Biochem. 26:1151-1159.

    Article  Google Scholar 

  • Smouse, P. E., J. C. Long, and R. R. Sokal, 1986, Multiple regression and correlation extensions of the Mantel test of matrix correspondence, Syst. Zool. 35:627-632.

    Article  Google Scholar 

  • Sokal, R., 1979, Testing statistical significance of geographic variation patterns, Syst. Zool. 28:227-232.

    Article  Google Scholar 

  • Sokal, R. R., 1986, Spatial data analysis and historical processes, in: Data Analysis and Informatics, IV, E. Diday, Y. Escoufier, L. Lebart, J. Pages, Y. Schertman, and R. Tomassone, eds., North Holland, Amsterdam, pp. 29-43.

    Google Scholar 

  • Sokal, R. R., and N. L. Oden, 1978, Spatial autocorrelation in biology. 2. Some biological implications and four applications of evolutionary and ecological interest, Biol. J. Linn. Soc. 10:229-249.

    Article  Google Scholar 

  • Sokal, R. R., J. Bird, and B. Riska, 1980, Geographic variation in Pemphigus populicaulis (Insecta: Aphididae) in eastern North America, Biol. J. Linn. Soc. 14:163-200.

    Article  Google Scholar 

  • Sokal, R. R., N. L. Oden, B. A. Thomson, and J. H. Kim, 1993, Testing for regional differences in means - distinguishing inherent from spurious spatial autocorrelation by restricted randomization, Geogr. Anal. 25:199-210.

    Google Scholar 

  • Star, J. L., and M. M. Mullin, 1981, Zooplankton assemblages in three areas of the North Pacific as revealed by continuous horizontal transects, Deep Sea Res. 28:1303-1322.

    Article  Google Scholar 

  • Steele, J. H., and E. W. Henderson, 1992, A simple-model for plankton patchiness, J. Plankton Res. 14:1397-1403.

    Article  Google Scholar 

  • Stein, A., J. Riley, and N. Halberg, 2001, Issues of scale for environmental indicators, Agric. Ecosyst. Environ. 87:215-232.

    Article  Google Scholar 

  • Thompson, S. K., 2002, Sampling. Wiley-Interscience, New York.

    Google Scholar 

  • Troussellier, M., P. Lebaron, B. Baleux, and P. Got, 1993, Spatial-distribution patterns of heterotrophic bacterial populations in a coastal ecosystem (Thau Basin, France), Estuar. Coast. Shelf Sci. 36:281-293.

    Article  Google Scholar 

  • Turner, M. G., 1989, Landscape ecology - the effect of pattern on process, Ann. Rev. Ecol. Syst. 20:171-197.

    Article  Google Scholar 

  • Turner, M. G., and S. R. Carpenter, 1999, Spatial variability in ecosystem function-Introduction, Ecosystems 2:383-383.

    Article  Google Scholar 

  • Upton, G., and B. Fingleton, 1985, Spatial Data Analysis by Example. Volume 1: Point Pattern and Quantitative Data. Wiley, Chichester, England.

    Google Scholar 

  • van Es, H. M., and C. L. van Es, 1993, Spatial nature of randomization and its effect on the outcome of field experiments, Agron. J. 85:420-428.

    Article  Google Scholar 

  • Walter, C., A. B. McBratney, R. A. V. Rossel, and J. A. Markus, 2005, Spatial point-process statistics: concepts and application to the analysis of lead contamination in urban soil, Environmetrics 16:339-355.

    Article  CAS  Google Scholar 

  • Wiegand, T., and K. A. Moloney, 2004, Rings, circles, and null-models for point pattern analysis in ecology, Oikos 104:209-229.

    Article  Google Scholar 

  • Wu, J. G., and S. A. Levin, 1994, A spatial patch dynamic modeling approach to pattern and process in an annual grassland, Ecol. Monogr. 64:447-464.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Franklin, R.B., Mills, A.L. (2007). Statistical Analysis Of Spatial Structure In Microbial Communities. In: Franklin, R.B., Mills, A.L. (eds) The Spatial Distribution of Microbes in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6216-2_2

Download citation

Publish with us

Policies and ethics