Skip to main content

Introduction

The importance of microbial distribution in space and spatial scale to microbial ecology

  • Chapter

Microorganisms are very small, and their individual effects are equally miniscule. Their effects on ecosystems, however, are felt at the landscape scale. To understand how their aggregate activities are arranged on these landscapes, microbes must be studied at a variety of scales, from the microscopic to the regional, and those scales must eventually be reconciled. Keywords: bacteria, spatial distribution, community analysis, multiscale, interaction scale

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, N. R., J. A. Robinson, and J. M. Suflita, 1994, Spatial variability in biodegradation rates as evidenced by methane production from an aquifer, Appl. Environ. Microbiol. 60:3632-3639.

    PubMed  CAS  Google Scholar 

  • Avois, C., P. Legendre, S. Masson, and B. Pinel-Alloul, 2000, Is the sampling strategy interfering with the study of spatial variability of zooplankton communities, Can. J. Fish. Aquat. Sci. 57:1940-1956.

    Google Scholar 

  • Azam, F., and J. W. Ammerman, 1984, Cycling of organic matter by bacterioplankton in pelagic marine ecosystems: microenvironmental considerations, in: Flows of Energy and Materials in Marine Ecosystems, M. J. R. Fasham, ed., Plenum Press, New York, pp. 345-360.

    Google Scholar 

  • Balser, T. C., and M. K. Firestone, 1996, Sources of variability in BIOLOG assays of soil microbial communities: spatial and analytical. Presented at the Conference on Substrate Use for Characterization of Microbial Communities in Terrestrial Ecosystems, Innsbruck, Austria.

    Google Scholar 

  • Bell, W., and R. Mitchell, 1972, Chemotactic and growth responses of marine bacteria to algal extracellular products, Biol. Bull. 143:265-277.

    Google Scholar 

  • Bending, G. D., E. Shaw, and A. Walker, 2001, Spatial heterogeneity in the metabolism and dynamics of isoproturon degrading microbial communities in soil, Biol. Fert. Soil. 33:484-489.

    CAS  Google Scholar 

  • Benedetti-Cecchi, L., 2001, Variability in abundance of algae and invertebrates at different spatial scales on rocky sea shores, Mar. Ecol. Prog. Ser. 215:79-92.

    Google Scholar 

  • Berardesco, G., S. Dyhrman, E. Gallagher, and M. P. Shiaris, 1998, Spatial and temporal variation of phenanthrene-degrading bacteria in intertidal sediments, Appl. Environ. Microbiol. 64:2560-2565.

    PubMed  CAS  Google Scholar 

  • Berg, H. C., 1983, Random Walks in Biology. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Blackburn, N., and T. Fenchel, 1999, Influence of bacteria, diffusion and shear on micro-scale nutrient patches, and implications for bacterial chemotaxis, Mar. Ecol. Prog. Ser. 189:1-7.

    CAS  Google Scholar 

  • Blackburn, N., T. Fenchel, and J. G. Mitchell, 1998, Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria, Science 282:2254-2256.

    PubMed  CAS  Google Scholar 

  • Blum, L. K., M. S. Roberts, J. L. Garland, and A. L. Mills, 2004, Microbial communities among the dominant high marsh plants and associated sediments of the United States east coast, Microb. Ecol. 48:375-383.

    PubMed  CAS  Google Scholar 

  • Both, G. J., S. Gerards, and H. J. Laanbroek, 1992, Temporal and spatial variation in the nitrite-oxidizing bacterial community of a grassland soil, FEMS Microbiol. Ecol. 101: 99-112.

    Google Scholar 

  • Brock, T. D., 1987, The study of microorganisms in situ: progress and problems, in: Ecology of Microbial Communities, M. Fletcher, T. R. G. Gray, and J. G. Jones, eds., Cambridge University Press, Cambridge, UK, pp. 1-17.

    Google Scholar 

  • Cavigelli, M. A., G. P. Robertson, and M. J. Klug, 1995, Fatty-acid methyl-ester (FAME) profiles as measures of soil microbial community structure, Plant Soil. 170:99-113.

    CAS  Google Scholar 

  • Cho, J. C., and J. M. Tiedje, 2000, Biogeography and degree of endenicity of fluorescent Pseudomonas strains in soil, Appl. Environ. Microbiol. 66:5448-5456.

    PubMed  CAS  Google Scholar 

  • Curtis, T. P., W. T. Sloan, and J. W. Scannel, 2002, Estimating prokaryotic diversity and its limits, Proc. Natl. Acad. Sci. USA 99:10491-10499.

    Google Scholar 

  • Dahllof, I., 2002, Molecular community analysis of microbial diversity, Curr. Opin. Biotechnol. 13:213-217.

    PubMed  CAS  Google Scholar 

  • Dandurand, L. M., G. R. Knudsen, and D. J. Schotzko, 1995, Quantification of Pythium-ultimum var sporangiiferum zoospore encystment patterns using geostatistics, Phytopathology 85:186-190.

    Google Scholar 

  • Dandurand, L. M., D. J. Schotzko, and G. R. Knudsen, 1997, Spatial patterns of rhizoplane populations of Pseudomonas fluorescens, Appl. Environ. Microbiol. 63:3211-3217.

    PubMed  CAS  Google Scholar 

  • Danovaro, R., M. Armeni, A. Dell’Anno, M. Fabiano, E. Manini, D. Marrale, A. Pusceddu, and S. Vanucci, 2001, Small-scale distribution of bacteria, enzymatic activities, and organic matter in coastal sediments, Microb. Ecol. 42:177-185.

    PubMed  CAS  Google Scholar 

  • Dechesne, A., C. Pallud, D. Debouzie, J. P. Flandrois, T. M. Vogel, J. P. Gaudet, and G. L. Grundmann, 2003, A novel method for characterizing the microscale 3D spatial distri-bution of bacteria in soil, Soil Biol. Biochem. 35:1537-1546.

    CAS  Google Scholar 

  • Duarte, C. M., and D. Vaqué, 1992, Scale dependence of bacterioplankton patchiness, Mar. Ecol. Prog. Ser. 84:95-100.

    Google Scholar 

  • Ettema, C. H., and D. A. Wardle, 2002, Spatial soil ecology, Trends Ecol. Evol. 17:177-183.

    Google Scholar 

  • Fenchel, T., 1984, Suspended marine bacteria as a food source, in: Flows of Energy and Materials in Marine Ecosystems, M. J. R. Fasham, ed., Plenum Press, New York, pp. 301-316.

    Google Scholar 

  • Finlay, B. J., J. O. Corliss, G. F. Esteban, and T. Fenchel, 1996, Biodiversity at the microbial level: the number of free-living ciliates in the biosphere, Quart. Rev. Biol. 71:221-237.

    Google Scholar 

  • Finlay, B. J., G. F. Esteban, K. J. Clarke, and J. L. Olmo, 2001, Biodiversity of terrestrial protozoa appears homogeneous across local and global spatial scales, Protist 152: 355-366.

    PubMed  CAS  Google Scholar 

  • Finlay, B. J., G. F. Esteban, J. L. Olmo, and P. A. Tyler, 1999, Global distribution of free-living microbial species, Ecography 22:138-144.

    Google Scholar 

  • Franklin, R. B., and A. L. Mills, 2003, Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field, FEMS Microbiol. Ecol. 44:335-346.

    PubMed  CAS  Google Scholar 

  • Franklin, R. B., D. R. Taylor, and A. L. Mills, 1999, Characterization of microbial communities using randomly amplified polymorphic DNA (RAPD), J. Microbiol. Methods 35:225-235.

    PubMed  CAS  Google Scholar 

  • Franklin, R. B., D. R. Taylor, and A. L. Mills, 2000, The distribution of microbial communities in anaerobic and aerobic zones of a shallow coastal plain aquifer, Microb. Ecol. 38:377-386.

    Google Scholar 

  • Franklin, R. B., J. L. Garland, C. H. Bolster, and A. L. Mills, 2001, The impact of dilution on microbial community structure and functional potential: a comparison of numerical simulations and batch culture experiments, Appl. Environ. Microbiol. 67:702-712.

    PubMed  CAS  Google Scholar 

  • Franklin, R. B., L. K. Blum, A. McComb, and A. L. Mills, 2002, A geostatistical analysis of small-scale spatial variability in bacterial abundance and community structure in salt-marsh creek bank sediments, FEMS Microbiol. Ecol. 42:71-80.

    PubMed  CAS  Google Scholar 

  • Fulthorpe, R. R., A. N. Rhodes, and J. M. Tiedje, 1998, High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria, Appl. Environ. Microbiol. 64:1620-1627.

    PubMed  CAS  Google Scholar 

  • GarciaPichel, F., L. PrufertBebout, and G. Muyzer, 1996, Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium, Appl. Environ. Microbiol. 62:3284-3291.

    CAS  Google Scholar 

  • Garland, J. L., and A. L. Mills, 1991, Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level-sole-carbon-source utilization, Appl. Environ. Microbiol. 57:2351-2359.

    PubMed  CAS  Google Scholar 

  • Garland, J. L., M. S. Roberts, L. F. Levine, and A. L. Mills, 2003, Community-level physiological profiling using an oxygen-sensitive fluorophore in a microtiter plate, Appl. Environ. Microbiol. 69:2994-2998.

    PubMed  CAS  Google Scholar 

  • Green, J. L., A. J. Holmes, M. Westoby, I. Oliver, D. Briscoe, M. Dangerfield, M. Gillings, and A. J. Beattie, 2004, Spatial scaling of microbial eukaryote diversity, Nature 432: 747-750.

    PubMed  CAS  Google Scholar 

  • Griffiths, B. S., K. Ritz, and L. A. Glover, 1996, Broad-scale approaches to the determination of soil microbial community structure: application of the community DNA hybridization technique, Microb. Ecol. 31:269-280.

    PubMed  Google Scholar 

  • Grundmann, G. L., and D. Debouzie, 2000, Geostatistical analysis of the distribution of NH4+ and NO2−-oxidizing bacteria and serotypes at the millimeter scale along a soil transect, FEMS Microbiol. Ecol. 34:57-62.

    PubMed  CAS  Google Scholar 

  • Grundmann, G. L., and P. Normand, 2000, Microscale diversity of the genus Nitrobacter in soil on the basis of analysis of genes encoding rRNA, Appl. Environ. Microbiol. 66:4543-4546.

    PubMed  CAS  Google Scholar 

  • Grundmann, G. L., A. Dechesne, F. Bartoli, J. P. Flandrois, J. L. Chasse, and R. Kizungu, 2001, Spatial modeling of nitrifier microhabitats in soil, Soil Sci. Soc. Am. J. 65:1709-1716.

    CAS  Google Scholar 

  • Handelsman, J., and K. Smalla, 2003, Techniques: conversations with the silent majority, Curr. Opin. Microbiol. 6:271-273.

    Google Scholar 

  • Harris, P. J., 1994, Consequences of the spatial distribution of microbial communities in soil, in: Beyond the Biomass: Compositional and Functional Analysis of Soil Microbial Communities, K. Ritz, J. Dighton, and K. E. Giller, eds., Wiley, Chichester, UK, pp. 239-247.

    Google Scholar 

  • Hewitt, J. E., S. F. Thrush, V. J. Cummings, and S. J. Turner, 1998, The effect of changing sampling scales on our ability to detect effects of large-scale processes on communities, J. Exp. Mar. Biol. Ecol. 227:251-264.

    Google Scholar 

  • Holben, W. E., 1994, Isolation and purification of bacterial DNA from soil, in: Methods of Soil Analysis. Part 2: Microbiological and Biochemical Properties, R. W. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, and A. Wollum, eds., Soil Science Society of America, Madison, WI, pp. 727-751.

    Google Scholar 

  • Holben, W. E., and D. Harris, 1995, DNA-based monitoring of total bacterial community structure in environmental samples, Molec. Ecol. 4:627-631.

    CAS  Google Scholar 

  • Johnsen, K., C. S. Jacobsen, V. Torsvik, and J. Sorensen, 2001, Pesticide effects on bacterial diversity in agricultural soils - a review, Biol. Fert. Soil. 33:443-453.

    CAS  Google Scholar 

  • Jordan, F. L., and R. M. Maier, 1999, Development of an agar lift-DNA/DNA hybridization technique for use in visualization of the spatial distribution of Eubacteria on soil surfaces, J. Microbiol. Methods 38:107-117.

    PubMed  CAS  Google Scholar 

  • Kang, S., and A. L. Mills, 2006, The effect of sample size in studies of soil microbial comm-unity structure, J. Microbial Meth. 66:242-250.

    Google Scholar 

  • Kawaguchi, T., and A. W. Decho, 2002, In situ microspatial imaging using two-photon and confocal laser scanning microscopy of bacteria and extracellular polymeric secretions (EPS) within marine stromatolites, Mar. Biotechnol. 4:127-131.

    PubMed  CAS  Google Scholar 

  • Kennedy, A. C., 1994, Carbon utilization and fatty acid profiles for characterization of bacteria, in: Methods of Soil Analysis. Part 2, Microbiological and Biochemical Properties, Vol. 5, R. W. Weaver and J. S. Angle, eds., Soil Science Society of America, Madison, WI, pp. 543-556.

    Google Scholar 

  • Kennedy, A. C., and V. L. Gewin, 1997, Soil microbial diversity: present and future considerations, Soil Sci. 162:607-617.

    CAS  Google Scholar 

  • Kieft, T. L., E. Wilch, K. O’Connor, D. B. Ringelberg, and D. C. White, 1997, Survival and phopholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms, Appl. Environ. Microbiol. 63:1531-1542.

    PubMed  CAS  Google Scholar 

  • Kozdroj, J., and J. D. van Elsas, 2001, Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches, J. Microbiol. Methods 43:197-212.

    PubMed  CAS  Google Scholar 

  • Krembs, C., A. R. Juhl, and J. R. Strickler, 1998, The spatial information preservation method: sampling the nanoscale spatial distribution of microorganisms, Limnol. Oceanogr. 43: 298-306.

    Article  Google Scholar 

  • Krembs, C., A. R. Juhl, R. A. Long, and F. Azam, 1998, Nanoscale patchiness of bacteria in lake water studied with the spatial information preservation method, Limnol. Oceanogr. 43:307-314.

    Google Scholar 

  • Kuperman, R. G., G. P. Williams, and R. W. Parmelee, 1998, Spatial variability in the soil foodwebs in a contaminated grassland ecosystem, Appl. Soil Ecol. 9:509-514.

    Google Scholar 

  • Laczko, E., A. Rudaz, and M. Aragno, 1997, Diversity of anthropogenically influenced or disturbed microbial communities, in: Microbial Communities: Functional Versus Structural Approaches, H. Insam and A. Rangger, eds., Springer, Berlin, pp. 57-67.

    Google Scholar 

  • Lee, S., and J. A. Fuhrman, 1990, DNA hybridization to compare species composition of natural bacterioplankton assemblages, Appl. Environ. Microbiol. 56:739-746.

    PubMed  CAS  Google Scholar 

  • Lee, S., and J. A. Fuhrman, 1991, Spatial and temporal variation of natural bacterioplankton assemblages studied by total genomic DNA cross-hybridization, Limnol. Oceanogr. 36:1277-1287.

    Article  Google Scholar 

  • Legendre, P., and L. Legendre, 1998, Numerical Ecology, 2nd Edition. Elsevier, Amsterdam.

    Google Scholar 

  • Legendre, P., and M. -J. Fortin, 1989, Spatial pattern and ecological analysis, Vegetatio 80:107-138.

    Google Scholar 

  • Legendre, P., N. L. Oden, R. R. Sokal, A. Vaudor, and J. Kim, 1990, Approximate analysis of variance of spatially autocorrelated regional data, J. Classif. 7:53-75.

    Google Scholar 

  • Lehman, J. T., and D. Scavia, 1982, Microscale patchiness of nutrients in plankton communities, Science 216:729-730.

    PubMed  CAS  Google Scholar 

  • Levin, S. A., 1992, The problem of pattern and scale in ecology, Ecology 73:1943-1967.

    Google Scholar 

  • Levin, S. A., and L. A. Segal, 1976, Hypothesis for origin of planktonic patchiness, Nature 259:659.

    Google Scholar 

  • Licht, T. R., K. A. Krogfelt, P. S. Cohen, L. K. Poulsen, J. Urbance, and S. Molin, 1996, Role of lipopolysaccharide in colonization of the mouse intestine by Salmonella typhimurium studied by in situ hybridization, Infect. Immun. 64:3811-3817.

    PubMed  CAS  Google Scholar 

  • Liu, W. -T., T. L. Marsh, H. Cheng, and L. J. Forney, 1997, Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA, Appl. Environ. Microbiol. 63:4516-4522.

    PubMed  CAS  Google Scholar 

  • Long, R. A., and F. Azam, 2001, Microscale patchiness of bacterioplankton assemblage richness in seawater, Aquat. Microb. Ecol. 26:103-113.

    Google Scholar 

  • Mackas, D. L., 1984, Spatial autocorrelation of plankton community composition in a continental shelf ecosystem, Limnol. Oceanogr. 29:451-471.

    Article  Google Scholar 

  • Macnaughton, S. J., T. Booth, T. M. Embley, and A. G. O’Donnell, 1996, Physical stabili-zation and confocal microscopy of bacteria on roots using 16S rRNA targeted, fluorescent-labelled oligonucleotide probes, J. Microbiol. Methods 26:279-285.

    CAS  Google Scholar 

  • Manz, W., G. Arp, G. Schumann-Kindel, U. Szewzyk, and J. Reitner, 2000, Widefield decon-volution epifluorescence microscopy combined with fluorescence in situ hybridization reveals the spatial arrangement of bacteria in sponge tissue, J. Microbiol. Methods 40:125-134.

    PubMed  CAS  Google Scholar 

  • Marsh, T. L., 1999, Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products, Curr. Opin. Microbiol. 2:323-327.

    PubMed  CAS  Google Scholar 

  • Massol-Deya, A. A., D. A. Odelson, R. F. Hickey, and J. M. Tiedje, 1995, Bacterial com-munity fingerprinting of amplified 16S and 16-23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA), in: Molecular Microbial Ecology Manual, A. D. L. Akkermans, J. D. Van Elsas, and F. J. De Bruijn, eds., Kluwer Academic, Dordrecht, The Netherlands, Section 3.3.2, pp. 1-8.

    Google Scholar 

  • Moran, M. A., A. E. Maccubbin, R. Benner, and R. E. Hodson, 1987, Dynamics of microbial biomass and activity in five habitats of the Okefenokee Swamp ecosystem (Georgia, USA), Microb. Ecol. 14:203-218.

    Google Scholar 

  • Morris, S. J., and R. E. J. Boerner, 1999, Spatial distribution of fungal and bacterial biomass in southern Ohio hardwood forest soils: scale dependency and landscape patterns, Soil Biol. Biochem. 31:887-902.

    CAS  Google Scholar 

  • Muyzer, G., 1999, DGGE/TGGE a method for identifying genes from natural ecosystems, Curr. Opin. Microbiol. 2:317-322.

    PubMed  CAS  Google Scholar 

  • Muyzer, G., E. C. DeWaal, and G. Uitterlinden, 1993, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Appl. Environ. Microbiol. 59:695-700.

    PubMed  CAS  Google Scholar 

  • Nunan, N., K. Ritz, D. Crabb, K. Harris, K. J. Wu, J. W. Crawford, and I. M. Young, 2001, Quantification of the in situ distribution of soil bacteria by large-scale imaging of thin sections of undisturbed soil, FEMS Microbiol. Ecol. 37:67-77.

    CAS  Google Scholar 

  • Nunan, N., K. Wu, I. M. Young, J. W. Crawford, and K. Ritz, 2002, In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil, Microb. Ecol. 44:296-305.

    PubMed  CAS  Google Scholar 

  • O’Neil, P. V., 1991, Advanced Engineering Mathematics, 4th Edition. Brooks/Cole, Pacific Grove, CA.

    Google Scholar 

  • O’Neill, R. V., and A. W. King, 1998, Homage to St. Michael; or, why are there so many books on scale? in: Ecological Scale: Theory and Applications, D. L. Peterson and V. T. Parker, eds., Columbia University Press, New York, pp. 3-15.

    Google Scholar 

  • Parkin, T. B., 1987, Soil microsites as a source of denitrification variability, Soil Sci. Soc. Am. J. 51:1194-1199.

    Article  CAS  Google Scholar 

  • Parkin, T. B., 1993, Spatial variability of microbial processes in soil - a review, J. Environ. Qual. 22:409-417.

    Article  Google Scholar 

  • Parkin, T. B., J. L. Starr, and J. J. Meisinger, 1987, Influence of sample size on measurement of soil denitrification, Soil Sci. Soc. Am. J. 51:1492-1501.

    Article  CAS  Google Scholar 

  • Parry, S., P. Renault, C. Chenu, and R. Lensi, 1999, Denitrification in pasture and cropped soil clods as affected by pore space structure, Soil Biol. Biochem. 31:493-501.

    CAS  Google Scholar 

  • Poulsen, L. K., F. S. Lan, C. S. Kristensen, P. Hobolth, S. Molin, and K. A. Krogfelt, 1994, Spatial distribution of Escherichia coli in the mouse large intestine inferred from ribosomal-RNA in-situ hybridization, Infect. Immun. 62:5191-5194.

    PubMed  CAS  Google Scholar 

  • Rahel, F. J., 1990, The hierarchical nature of community persistence - a problem of scale, Am. Nat. 136:328-344.

    Google Scholar 

  • Ritz, K., W. McNicol, N. Nunan, S. Grayston, P. Millard, D. Atkinson, A. Gollotte, D. Habeshaw, B. Boag, C. D. Clegg, B. S. Griffiths, R. E. Wheatley, L. A. Glover, A. E. McCaig, and J. I. Prosser, 2004, Spatial structure in soil chemical and microbiological properties in an upland grassland, FEMS Microbiol. Ecol. 49:191-205.

    PubMed  CAS  Google Scholar 

  • Roberts, M. S., J. L. Garland, and A. L. Mills, 2004, Microbial astronauts: assembling microbial communities for advanced life support systems, Microb. Ecol. 47:137-149.

    PubMed  CAS  Google Scholar 

  • Robertson, G. P., and K. L. Gross, 1994, Assessing the heterogeneity of belowground resources: quantifying pattern and scale, in: Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above- and Belowground, M.M. Caldwell and R.W. Pearcy, eds., Academic Press, San Diego, CA, pp. 237-253.

    Google Scholar 

  • Robertson, G. P., and J. M. Tiedje, 1988, Deforestation alters denitrification in a lowland tropical rain-forest, Nature 336:756-759.

    CAS  Google Scholar 

  • Robertson, G. P., K. M. Klingensmith, M. J. Klug, E. P. Paul, J. R. Crum, and B. G. Ellis, 1997, Soil resources, microbial activity, and primary production across an agricultural ecosystem, Ecol. App. 7:158-170.

    Google Scholar 

  • Ronimus, R. S., L. E. Parker, and H. W. Morgan, 1997, The utilization of RAPD-PCR for identifying thermophilic and mesophilic Bacillus species, FEMS Microbiol. Lett. 147: 75-79.

    PubMed  CAS  Google Scholar 

  • Rothemund, C., R. Amann, S. Klugbauer, W. Manz, C. Bieber, K. H. Schleifer, and P. Wilderer, 1996, Microflora of 2,4-dichlorophenoxyacetic acid degrading biofilms on gas permeable membranes, Sys. Appl. Microbiol. 19:608-615.

    CAS  Google Scholar 

  • Saetre, P., and E. Bååth, 2000, Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand, Soil Biol. Biochem. 32:909-917.

    CAS  Google Scholar 

  • Scala, D. J., and L. J. Kerkhof, 2000, Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis, Appl. Environ. Microbiol. 66:1980-1986.

    PubMed  CAS  Google Scholar 

  • Schneider, D. C., 1994, Quantitative ecology - spatial and temporal scaling. Academic Press, San Diego, CA.

    Google Scholar 

  • Schneider, D. C., 1998, Applied scaling theory, in: Ecological scale: theory and applications, D. L. Peterson and V. T. Parker ed., Columbia University Press, New York, pp. 253-269.

    Google Scholar 

  • Schulz, H. N., and B. B. Jørgensen, 2001, Big bacteria, Ann. Rev. Microbiol. 55:105-137.

    CAS  Google Scholar 

  • Sieburth, J. M., 1984, Protozoan bacteriovory in pelagic marine waters, in: Heterotrophic Activity in the Sea, J. E. Hobbie and P. J. L. Williams, eds., Plenum Press, New York, pp. 405-444.

    Google Scholar 

  • Smith, J. L., J. J. Halvorson, and H. Bolton, 1994, Spatial relationships of soil microbial biomass and C and N mineralization in a semiarid shrub-steppe ecosystem, Soil Biol. Biochem. 26:1151-1159.

    Google Scholar 

  • Stein, A., J. Riley, and N. Halberg, 2001, Issues of scale for environmental indicators, Agric. Ecosys. Environ. 87:215-232.

    Google Scholar 

  • Stenger, R., E. Priesack, and F. Beese, 2002, Spatial variation of nitrate-N and related soil properties at the plot-scale, Geoderma 105:259-275.

    CAS  Google Scholar 

  • Swift, M. J., 1984, Microbial diversity and decomposer niches, in: Current Perspectives in Microbial Ecology, M. J. Klug and C. A. Reddy, eds., American Society of Microbiology Press, Washington, DC, pp. 8-16.

    Google Scholar 

  • Teske, A., T. Brinkhoff, G. Muyzer, D. P. Moser, J. Rethmeier, and H. W. Jannasch, 2000, Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents, Appl. Environ. Microbiol. 66:3125-3133.

    PubMed  CAS  Google Scholar 

  • Theron, J., and T. E. Cloete, 2000, Molecular techniques for determining microbial diversity and community structure in natural environments, Crit. Rev. Microbiol. 26:37-57.

    PubMed  CAS  Google Scholar 

  • Torsvik, V., J. Goksøyr, and F. L. Daae, 1990, High diversity of DNA of soil bacteria, Appl. Environ. Microbiol. 56:782-787.

    PubMed  CAS  Google Scholar 

  • Torsvik, V., J. Goksøyr, F. L. Daae, R. Sørheim, J. Michalsen, and K. Salte, 1994, Use of DNA analysis to determine the diversity of microbial communities, in: Beyond the Biomass, K. Ritz, J. Dighton, and K. E. Giller, eds., Wiley, Chichester, UK, pp. 39-48.

    Google Scholar 

  • Torsvik, V., R. Sorheim, and J. Goksøyr, 1996, Total bacterial diversity in soil and sediment communities - a review, J. Indust. Microbiol. 17:170-178.

    CAS  Google Scholar 

  • Torsvik, V., F. L. Daae, R. A. Sandaa, and L. Øvreås, 1998, Novel techniques for analysing microbial diversity in natural and perturbed environments, J. Biotechnol. 64:53-62.

    PubMed  CAS  Google Scholar 

  • Torsvik, V., L. Øvreås, and T. F. Thingstad, 2002, Prokaryotic diversity - magnitude, dynamics, and controlling factors, Science 296:1064-1066.

    PubMed  CAS  Google Scholar 

  • Tunlid, A., and D. C. White, 1990, Use of lipid biomarkers in environmental samples, in: Analytical Microbial Methods, A. Fox, S. L. Morgan, L. Lennart, and G. Odham, eds., Plenum Press, New York, pp. 259-274.

    Google Scholar 

  • Valentine, D. W., E. A. Holland, and D. S. Schimel, 1994, Ecosystem and physiological controls over methane production in northern wetlands, J. Geophys. Res. 99:1563-1571.

    CAS  Google Scholar 

  • Wachinger, G., S. Fiedler, K. Zepp, A. Gattinger, M. Sommer, and K. Roth, 2000, Variability of soil methane production on the micro-scale: spatial association with hot spots of organic material and Archaeal populations, Soil Biol. Biochem. 32:1121-1130.

    CAS  Google Scholar 

  • Wagner, M., M. Horn, and H. Daims, 2003, Fluorescence in situ hybridization for the identification and characterization of prokaryotes, Curr. Opin. Microbiol. 6:302-309.

    PubMed  CAS  Google Scholar 

  • Webster, G., T. M. Embley, and J. I. Prosser, 2002, Grassland management regimens reduce small-scale heterogeneity and species diversity of beta-proteobacterial ammonia oxidizer populations, Appl. Environ. Microbiol. 68:20-30.

    PubMed  CAS  Google Scholar 

  • White, D. C., H. C. Pinkart, and D. B. Ringelberg, 1997, Biomass measurements: biochemical approaches, in: Manual of Environmental Microbiology, C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stetzenback, and M. V. Walter, eds., American Society for Micro-biology Press, Washington, DC, pp. 91-101.

    Google Scholar 

  • Whitman, W. B., D. C. Coleman, and W. J. Wiebe, 1998, Prokaryotes: the unseen majority, Proc. Natl. Acad. Sci. USA 95:6578-6583.

    PubMed  CAS  Google Scholar 

  • Wiens, J. A., J. F. Addicott, T. J. Case, and J. Diamond, 1986, The importance of spatial and temporal scale in ecological investigations, in: Community Ecology, J. Diamond and T. J. Case, eds., Harper & Row, New York, pp. 145-172.

    Google Scholar 

  • Wikstrom, P., A. -C. Andersson, and M. Forsman, 1999, Biomonitoring complex microbial communities using random amplified polymorphic DNA and principal component analysis, FEMS Microbiol. Ecol. 28:131.

    CAS  Google Scholar 

  • Wikstrom, P., L. Hagglund, and M. Forsman, 2000, Structure of a natural microbial com-munity in a nitroaromatic contaminated groundwater is altered during biodegradation of extrinsic, but not intrinsic substrates, Microb. Ecol. 39:203-210.

    PubMed  CAS  Google Scholar 

  • Williams, J. K. G., M. K. J. Hanafey, A. Rafalski, and S. V. Tingey, 1993, Genetic analysis using random amplified polymorphic DNA markers, Meth. Enzymol. 218:704-740.

    PubMed  CAS  Google Scholar 

  • Wollum, A. G., II, and D. K. Cassel, 1984, Spatial variability of Rhizobium japonicum in 2 North Carolina (USA) soils, Soil Sci. Soc. Am. J. 48:1082-1086.

    Article  Google Scholar 

  • Zabeau, M., and P. Vos., 1993, Selective restriction fragment amplification: a general method for DNA fingerprinting, European Patent Application 92402629.7, Publication Number EP 0534858 A1.

    Google Scholar 

  • Zhou, J., 2003, Microarrays for bacterial detection and microbial community analysis, Curr. Opin. Biotechnol. 6:288-294.

    CAS  Google Scholar 

  • Zhou, J., and D. K. Thompson, 2002, Challenges in applying microarrays to environmental studies, Curr. Opin. Biotechnol. 13:204-207.

    PubMed  CAS  Google Scholar 

  • Zhou, J., B. Xia, D. S. Treves, L. -Y. Wu, T. L. Marsh, R. V. O’Neill, A. V. Palumbo, and J. M. Tiedje, 2002, Spatial and resource factors influencing high microbial diversity in soil, Appl. Environ. Microbiol. 68:326-334.

    PubMed  CAS  Google Scholar 

  • Zogg, G. P., D. R. Zak, D. B. Ringelberg, N. W. MacDonald, K. S. Pregitzer, and D. C. White, 1997, Compositional and functional shifts in microbial communities due to soil warming, Soil Sci. Soc. Am. J. 61:475-481.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Franklin, R.B., Mills, A.L. (2007). Introduction. In: Franklin, R.B., Mills, A.L. (eds) The Spatial Distribution of Microbes in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6216-2_1

Download citation

Publish with us

Policies and ethics