Skip to main content

Calcium and Cardiomyopathies

  • Chapter
Calcium Signalling and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 45))

Abstract

Regulation of Calcium (Ca) cycling by the sarcoplasmic reticulum (SR) underlies the control of cardiac contraction during excitation-contraction (E-C) coupling. Moreover, alterations in E-C coupling occurring in cardiac hypertrophy and heart failure are characterized by abnormal Ca-cycling through the SR network. A large body of evidence points to the central role of: a) SERCA and its regulator phospholamban (PLN) in the modulation of cardiac relaxation; b) calsequestrin in the regulation of SR Ca-load; and c) the ryanodine receptor (RyR) Ca-channel in the control of SR Ca-release. The levels or activity of these key Ca-handling proteins are altered in cardiomyopathies, and these changes have been linked to the deteriorated cardiac function and remodeling. Furthermore, genetic variants in these SR Ca-cycling proteins have been identified, which may predispose to heart failure or fatal arrhythmias. This chapter concentrates on the pivotal role of SR Ca-cycling proteins in health and disease with specific emphasis on their recently reported genetic modifiers

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, M.E., Braun, A.P., Schulman, H., et al., 1994, Multifunctional Ca 2+ /calmodulin-dependent protein kinase mediates Ca(2+)-induced enhancement of the L-type Ca 2+ current in rabbit ventricular myocytes. Circ Res, 75(5), pp854–61.

    PubMed  CAS  Google Scholar 

  • Bassani, J.W., Yuan, W., andBers, D.M., 1995, Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am J Physiol, 268(5 Pt 1), ppC1313–9.

    PubMed  CAS  Google Scholar 

  • Bers, D.M., 2001,Excitation-Contraction Coupling and Cardiac Contractile Force. 2nd ed: Kluwer Academic Press, Boston, Massachusetts.

    Google Scholar 

  • Bossuyt, J., Ai, X., Moorman, J.R., et al., 2005, Expression and phosphorylation of the na-pump regulatory subunit phospholemman in heart failure. Circ Res, 97(6), pp558–65.

    Article  PubMed  CAS  Google Scholar 

  • Brittsan, A.G., andKranias, E.G., 2000, Phospholamban and cardiac contractile function. J. Mol. Cell. Cardiol., 32, pp2131–2139.

    Article  PubMed  CAS  Google Scholar 

  • Dash, R., Frank, K.F., Carr, A.N., et al., 2001, Gender influences on sarcoplasmic reticulum Ca 2+ -handling in failing human myocardium. J Mol Cell Cardiol, 33(7), pp1345–53.

    Article  PubMed  CAS  Google Scholar 

  • Dash, R., Kadambi, V., Schmidt, A.G., et al., 2001, Interactions between phospholamban and beta-adrenergic drive may lead to cardiomyopathy and early mortality. Circulation, 103(6), pp889–96.

    PubMed  CAS  Google Scholar 

  • de Tombe, P.P., 1998, Altered contractile function in heart failure. Cardiovasc Res, 37(2), pp367–80.

    Article  PubMed  Google Scholar 

  • del Monte, F., Harding, S.E., Schmidt, U., et al., 1999, Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation, 100, pp2308–11.

    CAS  Google Scholar 

  • Desai, K.H., Schauble, E., Luo, W., et al., 1999, Phospholamban deficiency does not compromise exercise capacity. Amer. J. Physiol, 276(4), ppH1172–7.

    PubMed  CAS  Google Scholar 

  • Farrell, E.F., Antaramian, A., Rueda, A., et al., 2003, Sorcin inhibits calcium release and modulates excitation-contraction coupling in the heart. J Biol Chem, 278, pp34660–66.

    Article  PubMed  CAS  Google Scholar 

  • Franz, W.M., Muller, O.J., andKatus, H.A., 2001. Cardiomyopathies: from genetics to the prospect of treatment. Lancet, 358, pp1627–1637.

    Article  PubMed  CAS  Google Scholar 

  • Garvey, J.L., Kranias, E.G., andSolaro, R.J., 1988, Phosphorylation of C-protein, troponin I and phospholamban in isolated rabbit hearts. Biochem J, 249(3), pp709–14.

    PubMed  CAS  Google Scholar 

  • Ginsburg, K.S., andBers, D.M., 2004, Modulation of excitation-contraction coupling by isoproterenol in cardiomyocytes with controlled SR Ca load and I_Ca trigger. J Physiol, 556(Pt 2), pp463–80.

    Article  PubMed  CAS  Google Scholar 

  • Go, L.O., Moschella, M.C., Watras, J., et al. 1995, Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest, 95(2), pp888–94.

    PubMed  CAS  Google Scholar 

  • Guo, T., Zhang, T., Mestril, R., Bers, D.M., 2006, Ca/Calmodulin-Dependent Protein Kinase II Phosphorylation of Ryanodine Receptor Does Affect Calcium Sparks in Mouse Ventricular Myocytes. Circ Res, 99(4), pp398–406.

    Article  PubMed  CAS  Google Scholar 

  • Gyorke, I., Hester, N., Jones, L.R., Gyorke, S., 2004, The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J., 86(4), pp2121–8.

    PubMed  Google Scholar 

  • Hasenfuss, G. 1998, Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res, 37(2), pp279–89.

    Article  PubMed  CAS  Google Scholar 

  • Hobai, I.A., O’Rourke, B. 2001, Decreased sarcoplasmic reticulum calcium content is responsible for defective excitation-contraction coupling in canine heart failure. Circulation, 103(11), pp1577–84.

    PubMed  CAS  Google Scholar 

  • Hoit, B.D., Khoury, S.F., Kranias, E.G., et al., 1995, In vivo echocardiographic detection of enhanced left ventricular function in gene-targeted mice with phospholamban deficiency. Circ Res,77(3), pp632–7.

    PubMed  CAS  Google Scholar 

  • Houser, S.R., Piacentino, V. 3rd., Mattiello, J., et al., 2000, Functional properties of failing human ventricular myocytes. Trends Cardiovasc Med, 10(3), pp101–7.

    Article  PubMed  CAS  Google Scholar 

  • Huang, B., Wang, S., Qin, D., et al., 1999, Diminished basal phosphorylation level of phospholamban in the postinfarction remodeled rat ventricle: role of beta-adrenergic pathway, G(i) protein, phosphodiesterase, and phosphatases. Circ Res, 85(9), pp848–55.

    PubMed  CAS  Google Scholar 

  • Kadambi, V.J., Ponniah, S., Harrer, J.M., et al., 1996, Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin Invest, 97(2), pp533–9.

    Article  PubMed  CAS  Google Scholar 

  • Kentish, J.C., McCloskey, D.T., Layland, J., et al. 2001, Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ Res, 88(10), pp1059–65.

    PubMed  CAS  Google Scholar 

  • Kranias, E.G., andSolaro, R.J., 1982, Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart. Nature, 298(5870), pp182–4.

    Article  PubMed  CAS  Google Scholar 

  • Kranias, E.G., Steenaart, N.A., andDi Salvo, J., 1988, Purification and characterization of phospholamban phosphatase from cardiac muscle. J Biol Chem, 263(30), pp15681–7.

    PubMed  CAS  Google Scholar 

  • Leenhardt, A., Lucet, V., Denjoy, I., et al., 1995, Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation, 91(5), pp1512–9.

    PubMed  CAS  Google Scholar 

  • Lehnart, S.E., Wehrens, X.H., Laitinen, P.J., et al., 2004, Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak. Circulation, 109(25), pp3208–14.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., Chu, G., Kranias, E.G., et al., 1998, Cardiac myocyte calcium transport in phospholamban knockout mouse: relaxation and endogenous CaMKII effects. Am J Physiol, 274(4 Pt 2), ppH1335–47.

    PubMed  CAS  Google Scholar 

  • Li, L., Desantiago, J., Chu, G., et al., 2000, Phosphorylation of phospholamban and troponin I in beta-adrenergic-induced acceleration of cardiac relaxation. Am J Physiol Heart Circ Physiol, 278(3), ppH769–79.

    PubMed  CAS  Google Scholar 

  • Li, L., Satoh, H., Ginsburg, K.S., et al., 1997, The effect of Ca(2+)-calmodulin-dependent protein kinase II on cardiac excitation-contraction coupling in ferret ventricular myocytes. J Physiol. 501(Pt 1), pp17–31.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Kranias, E.G., Mignery, G.A., et al., 2002, Protein kinase A phosphorylation of the ryanodine receptor does not affect calcium sparks in mouse ventricular myocytes. Circ Res, 90(3), pp309–16.

    Article  PubMed  CAS  Google Scholar 

  • Lindemann, J.P., Jones, L.R., Hathaway, D.R., et al., 1983, beta-Adrenergic stimulation of phospholamban phosphorylation and Ca 2+ -ATPase activity in guinea pig ventricles. J Biol Chem, 258(1), pp464–71.

    PubMed  CAS  Google Scholar 

  • Lindner, M., Erdmann, E., andBeuckelmann, D.J., 1998, Calcium content of the sarcoplasmic reticulum in isolated ventricular myocytes from patients with terminal heart failure. J Mol Cell Cardiol, 30(4), pp743–9.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, J.N., andKranias, E.G., 1997, Regulatory effects of phospholamban on cardiac function in intact mice. Am J Physiol, 273(6 Pt 2), ppH2826–31.

    PubMed  CAS  Google Scholar 

  • Luo, W., Grupp, I.L., Harrer, J., et al., 1994, Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res, 75(3), pp401–9.

    PubMed  CAS  Google Scholar 

  • Luo, W., Wolska, B.M., Grupp, I.L., et al., 1996, Phospholamban gene dosage effects in the mammalian heart. Circ Res, 78(5), pp839–47.

    PubMed  CAS  Google Scholar 

  • Luo, W., Chu, G., Sato, Y., et al., 1998, Transgenic approaches to define the functional role of dual site phospholamban phosphorylation. J. Biol. Chem., 273, pp4734–4739.

    Article  PubMed  CAS  Google Scholar 

  • MacLennan, D.H., andKranias, E.G., 2003, Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol, 4(7), pp566–77.

    Article  PubMed  CAS  Google Scholar 

  • Maier, L.S., Zhang, T., Chen, L., et al., 2003, Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca 2+ handling: reduced SR Ca 2+ load and activated SR Ca 2+ release. Circ Res, 92(8), pp904–11.

    Article  PubMed  CAS  Google Scholar 

  • Marx, S.O., Reiken, S., Hisamatsu, Y. et al., 2000, PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell, 101(4), pp365–76.

    Article  PubMed  CAS  Google Scholar 

  • McCall, E., Li, L., Satoh, H., et al., 1996, Effects of FK-506 on contraction and Ca 2+ transients in rat cardiac myocytes. Circ Res, 79(6), pp1110–21.

    PubMed  CAS  Google Scholar 

  • McTiernan, C.F., Frye, C.S., Lemster, B.H., et al., 1999, The human phospholamban gene: structure and expression. J. Mol. Cell. Cardiol, 31, pp679–692.

    Article  PubMed  CAS  Google Scholar 

  • Minamisawa, S., Sato, Y., Tatsuguchi, et al., 2003, Mutation of the phospholamban promoter associated with hypertrophic cardiomyopathy. Biochem Biophys Res Commun, 304(1), pp1–4.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, R.D., Simmerman, H.K., andJones, L.R., 1988, Ca 2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J Biol Chem, 263(3), pp1376–81.

    PubMed  CAS  Google Scholar 

  • Miyamoto, M.I., del Monte, F., Schmidt, U., et al., 2000, Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci U S A, 97(2), pp793–8.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, R., andSpinale, F.G., 1998, L-type calcium channel abundance and function with cardiac hypertrophy and failure: a review. J Mol Cell Cardiol, 30(10), pp1899–916.

    Article  PubMed  CAS  Google Scholar 

  • Mundina-Weilenmann, C., Vittone, L., Ortale, M., et al. 1996, Immunodetection of phosphorylation sites gives new insights into the mechanisms underlying phospholamban phosphorylation in the intact heart. J Biol Chem, 271(52), pp33561–7.

    Article  PubMed  CAS  Google Scholar 

  • Nabauer, M., andKaab, S., 1998, Potassium channel down-regulation in heart failure. Cardiovasc Res, 37(2), pp324–34.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, R.M., Narayan, P., Gomez, A.M., et al., 1998, Sarcoplasmic reticulum in heart failure: central player or bystander? Cardiovasc Res, 37(2), pp346–51.

    Article  PubMed  CAS  Google Scholar 

  • Pi, Y., Kemnitz, K.R., Zhang, D., et al., 2002, Phosphorylation of troponin I controls cardiac twitch dynamics: evidence from phosphorylation site mutants expressed on a troponin I-null background in mice. Circ Res, 90(6), pp649–56.

    Article  PubMed  CAS  Google Scholar 

  • Piacentino, V. 3rd, Weber, C.R., Chen, X., et al., 2003, Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res., 92(6), pp651–8.

    Article  PubMed  CAS  Google Scholar 

  • Pogwizd, S.M., Qi, M., Yuan, W., et al., 1999, Upregulation of Na(+)/Ca(2+) exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res, 85(11), pp1009–19.

    PubMed  CAS  Google Scholar 

  • Pogwizd, S.M., Schlotthauer, K., Li, L., et al., 2001, Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res., 88(11), pp1159–67.

    PubMed  CAS  Google Scholar 

  • Richard, S., Leclercq, F., Lemaire, S., et al., 1998, Ca 2+ currents in compensated hypertrophy and heart failure. Cardiovasc Res, 37(2), pp300–11.

    Article  PubMed  CAS  Google Scholar 

  • Sainte, Beuve C., Allen, P.D., Dambrin, G., et al., 1997, Cardiac calcium release channel (ryanodine receptor) in control and cardiomyopathic human hearts: mRNA and protein contents are differentially regulated. J Mol Cell Cardiol., 29(4), pp1237–46.

    Article  Google Scholar 

  • Sato, Y., Kiriazis, H., Yatani, A., et al., 2001, Rescue of contractile parameters and myocyte hypertrophy in calsequestrin overexpressing myocardium by phospholamban ablation. J. Biol. Chem., 276(12), pp9392–9,

    Article  PubMed  CAS  Google Scholar 

  • Schillinger, W., Meyer, M., Kuwajima, G., et al., 1996, Unaltered ryanodine receptor protein levels in ischemic cardiomyopathy. Mol Cell Biochem, 160–161, pp297–302.

    Article  PubMed  Google Scholar 

  • Schmidt, A.G., Haghighi, K., Frank, B., et al., 2003, Polymorphic SERCA2a variants do not account for inter-individual differences in phospholamban –SERCA2a interaction in human heart failure. J. Mol. Cell. Cardiol, 35, pp867–870.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, J.P., Kamisago, M., Asahi, M., et al., 2003, Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science, 299(5611), pp1410–1413.

    Article  PubMed  CAS  Google Scholar 

  • Schwinger, R.H., Munch, G., Bolck, B., et al., 1999, Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol, 31(3), pp479–91.

    Article  PubMed  Google Scholar 

  • Shannon, T.R., Ginsburg, K.S., andBers, D.M., 2000, Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intra-sarcoplasmic reticulum calcium concentration. Biophys J, 78(1), pp334–43.

    PubMed  CAS  Google Scholar 

  • Simmerman, H.K., andJones, L.R., 1998, Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev, 78(4), pp921–47.

    PubMed  CAS  Google Scholar 

  • Solaro, R.J., andBriggs, F.N., 1974, Estimating the functional capabilitities of sarcoplasmic reticulum in cardiac muscle. Circ. Res., 34, pp531–540.

    PubMed  CAS  Google Scholar 

  • Stange, M., Xu, L., Balshaw, D., et al., 2003, Characterization of recombinant skeletal muscle (Ser-., 2843) and cardiac muscle (Ser-., 2809) ryanodine receptor phosphorylation mutants. J Biol Chem, 278(51), pp51693–702.

    Article  PubMed  CAS  Google Scholar 

  • Talosi, L., Edes. I., andKranias, E.G., 1993, Intracellular mechanisms mediating reversal of beta-adrenergic stimulation in intact beating hearts. Am J Physiol, 264(3 Pt 2), ppH791–7.

    PubMed  CAS  Google Scholar 

  • Valdivia, H.H., Kaplan, J.H., Ellis-Davies, G.C., et al., 1995, Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science, 267, pp997–2000.

    Article  Google Scholar 

  • Vatner, D.E., Sato, N., Kiuchi, K., et al., 1994, Decrease in myocardial ryanodine receptors and altered excitation-contraction coupling early in the development of heart failure. Circulation, 90(3), pp1423–30.

    PubMed  CAS  Google Scholar 

  • Wang, J., Maertz, N.A., Lokua, A.J., et al., 2001, Regulation of cardiac Ryanodine Receptors activity by calsequestrin. Biophys J, 80, pp590a.

    Article  Google Scholar 

  • Wegener, A.D., Simmerman, H.K., Lindemann, J.P., et al., 1989, Phospholamban phosphorylation in intact ventricles. Phosphorylation of serine 16 and threonine 17 in response to beta-adrenergic stimulation. J Biol Chem, 264(19), pp11468–74.

    PubMed  CAS  Google Scholar 

  • Wehrens, X.H., Lehnart, S.E., Huang, F., et al., 2003, FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell, 113(7), pp829–40.

    Article  PubMed  CAS  Google Scholar 

  • Wickenden, A.D., Kaprielian, R., Kassiri, Z., et al., 1998, The role of action potential prolongation and altered intracellular calcium handling in the pathogenesis of heart failure. Cardiovasc Res, 37(2), pp312–23.

    Article  PubMed  CAS  Google Scholar 

  • Wolska, B.M., Stojanovic, M.O., Luo, W., et al., 1996, Effect of ablation of phospholamban on dynamics of cardiac myocyte contraction and intracellular Ca 2+ . Am J Physiol, 271(1 Pt 1), ppC391–7.

    PubMed  CAS  Google Scholar 

  • Xiao, B., Sutherland, C., Walsh, M.P., et al. 2004, Protein kinase A phosphorylation at serine-2808 of the cardiac Ca 2+ -release channel (ryanodine receptor) does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6). Circ Res, 94(4), pp487–95.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, R.P., Cheng, H., Lederer, W.J., et al. 1994, Dual regulation of Ca 2+/calmodulin-dependent kinase II activity by membrane voltage and by calcium influx. Proc Natl Acad Sci U S A. 91(20), pp9659–63.

    Article  PubMed  CAS  Google Scholar 

  • Yano, M., Ono, K., Ohkusa, T., et al. 2000, Altered stoichiometry of FKBP12.6 versus ryanodine receptor as a cause of abnormal Ca(2+) leak through ryanodine receptor in heart failure. Circulation, 102(17), pp2131–6.

    PubMed  CAS  Google Scholar 

  • Yuan, W., Bers, D.M. 1994, Ca-dependent facilitatiosn of cardiac Ca current is due to Ca-calmodulin-dependent protein kinase. Am J Physiol. 267(3 Pt 2), ppH982–93.

    PubMed  CAS  Google Scholar 

  • Zhang, L., Kelley, J., Schmeisser, G., et al. 1997, Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem, 272(37), pp23389–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

KRANIAS, E., BERS, D. (2007). Calcium and Cardiomyopathies. In: Carafoli, E., Brini, M. (eds) Calcium Signalling and Disease. Subcellular Biochemistry, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6191-2_20

Download citation

Publish with us

Policies and ethics