Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 194))

  • 2618 Accesses

Abstract

Abundance, biomass and production of pelagic bacteria were examined over one year at monthly sampling intervals across a trophic profile in Meiliang Bay, Lake Taihu. With the lowest density in the open lake, the bacterial abundance showed a clear trend in relation to trophic status. The carbon content per cell was higher in autumn and winter, and the opposite was true for bacterial biomass. Bacterial 3[H]-TdR and 14[C]-Leu incorporation rates, cell production, turnover times and carbon production varied during the annual cycle at different sites. The ratio of bacterial production to primary production was high, independently of the method used, indicates that the microbial food web in Lake Taihu is an important component of the total food web of the lake and dominated by external inputs.

Electronic Supplementary Material Supplementary material is available for this article at http://dx.doi.org/ 10.007/s10750-006-0511-7 and is accessible for authorized users

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azam, F., T. Fenchel, J. S. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10: 257–263.

    Article  Google Scholar 

  • Billen, G., 1990. Delayed development of bacterioplankton with respect to phytoplankton: a clue for understanding their trophic relationships. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 34: 191–201.

    Google Scholar 

  • Bird, D. F. & J. Kalff, 1984. Empirical relationship between bacterial abundance and chlorophyll concentrations in fresh and marine waters. Canadian Journal of Fisheries and Aquatic Sciences 41: 1015–1023.

    Article  Google Scholar 

  • Chin-Leo, G. & D. L. Kirchman, 1988. Estimating bacterial production in marine water from the simultaneous incorporation of thymidine and leucine. Applied and Environmental Microbiology 54: 1934–1939.

    PubMed  CAS  Google Scholar 

  • Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series 43: 1–10.

    Article  Google Scholar 

  • Davis, P. G. & J. M. Sieburth, 1984. Estuarine and oceanic microflagellate predation of actively growing bacteria: estimation by frequency of dividing — divided bacteria. Marine Ecology Progress Series 19: 237–246.

    Article  Google Scholar 

  • Del Giorgio, P. A. & G. Scarborough, 1995. Increase in the proportion of metabolically active bacteria along gradients of enrichment in freshwater and marine plankton: implications for estimates of bacterial growth and production rates. Journal of Plankton Research 17: 1905–1924.

    Article  Google Scholar 

  • Dufour, P. & M. Colon, 1992. The tetrazolium reduction method for assessing the viability of individual bacterial cells in aquatic environments: improvements, performance and applications. Hydrobiologia 232: 211–218.

    CAS  Google Scholar 

  • Fuhrman, J. A. & F. Azam, 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Applied and Environmental Microbiology 39: 1085–1095.

    PubMed  Google Scholar 

  • Fuhrman, J. A. & F. Azam, 1982. Thymidine incorporation as a measure of heterotrophic bacterial production in marine surface waters: evaluation and field results. Marine Biology 66: 109–120.

    Article  Google Scholar 

  • Fuhrman, J. A., T. D. Sleeter, C. A. Carlson & L. M. Proctor, 1989. Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Marine Ecology Progress Series 57: 207–217.

    Article  Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33: 1225–1228.

    PubMed  CAS  Google Scholar 

  • Huang, Y. P., C. X. Fan, P. M. Pu, J. F. Jiang & Q. Y. Dai, 2001. The Water Environment and Pollution Control in Lake Taihu. Sciences Press, Beijing (in Chinese).

    Google Scholar 

  • Kirchman, D. L., E. Knees & R. Hodson, 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and Environmental Microbiology 49: 599–607.

    PubMed  CAS  Google Scholar 

  • Kirchman, D. L. & M. P. Hoch, 1988. Bacterial production in the Delaware Bay estuary estimated from thymidine and leucine incorporation rates. Marine Ecology Progress Series 45: 169–178.

    Article  CAS  Google Scholar 

  • Kirchman, D. L., S. Y. Newell & R. E. Hodson, 1986. Incorporation versus biosynthesis of leucine: implications for measuring rates of protein synthesis and biomass production by bacteria in marine systems. Marine Ecology Progress Series 32: 47–59.

    Article  CAS  Google Scholar 

  • Krambeck, C., H. J. Krambeck & J. Overbeck, 1981. Microcomputer assisted biomass determination of plankton bacteria on scanning electron micrographs. Applied and Environmental Microbiology 42: 142–149.

    PubMed  Google Scholar 

  • Loferer-Krößbacher, M., K. P. Witzel & R. Psenner, 1998. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Applied and Environmental Microbiology 64: 688–694.

    PubMed  Google Scholar 

  • Mason, C. A., G. Hamer & J. D. Bryers, 1986. The death and lysis of microorganisms in environmental processes. FEMS Microbiology Review 39: 373–401.

    Article  CAS  Google Scholar 

  • Munawar, M. & T. Weisse, 1989. Is the ‘microbial loop’ an early warning indicator of anthropogenic stress? Hydrobiologia 188/189: 163–174.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Article  Google Scholar 

  • Posch, T., M. Loferer-Krößbacher, G. Gao, A. Alfreider, J. Pernthaler & R. Psenner, 2001. Precision of bacterioplankton biomass determination: a comparison of two fluorescent dyes, and of allometric and linear volume-to-carbon conversion factors. Aquatic Microbial Ecology 25: 55–63.

    Article  Google Scholar 

  • Psenner, R., 1991a. Detection and sizing of aquatic bacteria by means of epifluorescence microscopy and image analysis. Microscope Analysis 26: 13–15.

    Google Scholar 

  • Psenner, R., 1991b. Determination of bacterial cell volumes by image analysis. Verhandlungen Internationale Vereinigung Für Theoretische und Angewandte Limnologie 24: 2605–2608.

    Google Scholar 

  • Quinn, J. P., 1984. The modification and evaluation of some cytochemical techniques for the enumeration of metabolically active heterotrophic bacteria in the aquatic environment. Journal of Applied Bacteriology 57: 51–57.

    PubMed  CAS  Google Scholar 

  • Raymond, L., J. R. Kepner & J. R. Pratt, 1994. Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiology Review 58: 603–615.

    Google Scholar 

  • Robarts, R. D., M. T. Arts, M. S. Evans & M. J. Waiser, 1994. The coupling of heterotrophic bacterial and phytoplankton production in a hypertrophic, shallow prairie lake. Canadian Journal of Fisheries and Aquatic Sciences 51: 2219–2226.

    Google Scholar 

  • Servais, P., 1992. Bacterial production measured by 3H-thymidine and 3H-leucine incorporation in various aquatic ecosystems. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 37: 73–81.

    CAS  Google Scholar 

  • Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 51: 201–213.

    Article  CAS  Google Scholar 

  • Smits, J. D. & B. Riemann, 1988. Calculation of cell production from [3H]thymidine incorporation with freshwater bacteria. Applied and Environmental Microbiology 54: 2213–2219.

    PubMed  CAS  Google Scholar 

  • Sommaruga, R., 1995. Microbial and classical food web: A visit to a hypertrophic lake. FEMS Microbiology Ecology 17: 257–270.

    Article  CAS  Google Scholar 

  • Sorokin, Y. I., 1999. Aquatic microbial ecology. Backhuys Pbulishers, Leiden, Netherlands.

    Google Scholar 

  • Stevenson, L. H., 1978. A case for bacterial dormancy in aquatic systems. Microbial Ecology 4: 127–133.

    Article  Google Scholar 

  • Thom, S. M., R. W. Horobin, E. Seidler & M. R. Barer, 1993. Factors affecting the selection and use of tetrazolium salts as cytochemical indicators of microbial viability and activity. Journal of Applied Bacteriology 74: 433–443.

    PubMed  CAS  Google Scholar 

  • V.-Balogh, K. & L. Vörös, 1997. High bacterial production in hypertrophic shallow reservois rich in humic substances. Hydrobiogia 342/343: 63–70.

    Article  Google Scholar 

  • Weisse, T., 1991. The microbial food web and its sensitivity to eutrophication and contaminant enrichment: a cross-system overview. Internationale Revue der gesamten Hydrobiologie 76: 327–337.

    Article  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3 edn. Springer-Verlag, New York.

    Google Scholar 

  • Zimmerman, R., R. Iturriaga & J. Becker-Birck, 1978. Simultaneous determination of the total number of bacteria and number thereof involved in respiration. Applied and Environmental Microbiology 36: 926–935.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gao, G., Qin, B., Sommaruga, R., Psenner, R. (2007). The bacterioplankton of Lake Taihu, China: abundance, biomass, and production. In: Qin, B., Liu, Z., Havens, K. (eds) Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China. Developments in Hydrobiology, vol 194. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6158-5_20

Download citation

Publish with us

Policies and ethics