Skip to main content

Artificial habitats and the restoration of degraded marine ecosystems and fisheries

  • Conference paper
Biodiversity in Enclosed Seas and Artificial Marine Habitats

Part of the book series: Developments in Hydrobiology ((DIHY,volume 193))

Abstract

Artificial habitats in marine ecosystems are employed on a limited basis to restore degraded natural habitats and fisheries, and more extensively for a broader variety of purposes including biological conservation and enhancement as well as social and economic development. Included in the aims of human-made habitats classified as artificial reefs are: Aquaculture/marine ranching; promotion of biodiversity; mitigation of environmental damage; enhancement of recreational scuba diving; eco-tourism development; expansion of recreational fishing; artisanal and commercial fisheries production; protection of benthic habitats against illegal trawling; and research. Structures often are fabricated according to anticipated physical influences or life history requirements of individual species. For example, many of the world’s largest reefs have been deployed as part of a national fisheries program in Japan, where large steel and concrete frameworks have been carefully designed to withstand strong ocean currents. In addition, the differing ecological needs of porgy and sea bass for shelter guided the design of the Box Reef in Korea as a device to enhance productivity of marine ranching. The effect of these and other structures on fisheries catch is positive. But caution must be exercised to avoid using reefs simply as fishing devices to heavily exploit species attracted to them. No worldwide database for artificial habitats exists. The challenge to any ecological restoration effort is to define the condition or possibly even the historic baseline to which the system will be restored; in other words, to answer the question: “Restoration to what?” Examples of aquatic ecosystem restoration from Hong Kong (fisheries), the Pacific Ocean (kelp beds), Chesapeake Bay (oysters) and the Atlantic Ocean (coral reefs) are discussed. The degree to which these four situations consider or can approach a baseline is indicated and compared (e.g., four plants per 100 m2 are proposed in one project). Measurement of performance is a key factor in restoration planning. These situations also are considered for the ecosystem and fishery contexts in which they are conducted. All use ecological data as a basis for physical design of restoration structures. The use of experimental, pilot and modeling practices is indicated. A context for the young field of marine restoration is provided by reviewing major factors in ecosystem degradation, such as high stress on 70% of commercially valuable fishes worldwide. Examples of habitat disruption include an extensive hypoxic/anoxic zone in the Gulf of Mexico and nutrient and contaminant burdens in the North Sea. Principles of ecological restoration are summarized, from planning through to evaluation. Alternate approaches to facilitate ecological recovery include land-use and ecosystem management and determining levels of human population, consumption and pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beck, M. W., K. L. Heck, Jr., K. W. Able, D. L. Childers, D. B. Eggleston, B. M. Gillanders, B. S. Halpern, C. G. Hays, K. Hoshino, T. J. Minello, R. J. Orth, P. F. Sheridan & M. P. Weinstien, 2003. The role of nearshore ecosystems as fish and shellfish nurseries. Issues in Ecology. Number 11. Ecological Society of America: 12 pp.

    Google Scholar 

  • Clewell, A. F., J. Rieger & J. Munro, 2000. Guidelines for developing and managing ecological restoration projects. Publications Working Group. Society for Ecological Restoration: 11 pp.

    Google Scholar 

  • Coen, L. D. & M. W. Luckenbach, 2000. Developing success criteria and goals for evaluating oyster reef restoration: Ecological function or resource exploitation? Ecological Engineering 15: 323–343.

    Article  Google Scholar 

  • Deysher, L. E., T. A. Dean, R. S. Grove & A. Jahn, 2002. Design considerations for an artificial reef to grow giant kelp (Macrocystis pyrifera) in Southern California. ICES Journal of Marine Science. 59(Supplement 1): S201–S207.

    Article  Google Scholar 

  • EEA (European Environment Agency). 2003. Europe’s Environment: The Third Assessment. Office for Official Publications of the European Union, Luxembourg: 61 pp.

    Google Scholar 

  • FAO (United Nations Food and Agriculture Organization). 2002. The State of World Fisheries and Aquaculture, 2002. FAO Information Division, Rome, Italy.

    Google Scholar 

  • Frid, C. L. J. & S. Clark, 1999. Restoring aquatic ecosystems: An overview. Aquatic Conservation: Marine and Freshwater Ecosystems 9: 1–4.

    Article  Google Scholar 

  • ICES (International Council for the Exploration of the Sea), 2002. Seventh International Conference on Artificial Reefs and Related Aquatic Habitats. ICES Journal of Marine Science 59(Supplement): 362 pp.

    Google Scholar 

  • Jaap, W. C., 2000. Coral reef restoration. Ecological Engineering 15: 345–364.

    Article  Google Scholar 

  • Jackson, J. B. C., 2001. What was natural in the coastal ocean? Proceedings of the National Academy of Sciences 98: 5411–5418.

    Article  CAS  Google Scholar 

  • Jensen, A. C., K. J. Collins & A. P. M. Lockwood (eds.), 2000. Artificial Reefs in European Seas. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Kennedy, V. S. & L. L. Breisch, 1981. Maryland’s Oysters: Research and Management. University of Maryland Sea Grant Publication UM-SG-TS-81-04. College Park, Maryland.

    Google Scholar 

  • Koenig, C. C., 2001. Oculina banks: Habitat, fish populations, restoration and enforcement. Project Report. South Atlantic Fishery Management Council, Charleston, South Carolina.

    Google Scholar 

  • Lenihan, H. S., 1999. Physical-biological coupling on oyster reefs: How habitat structure influences individual performance. Ecological Monographs 69: 251–275.

    Google Scholar 

  • National Coral Reef Institute, 2001. Proceedings of the International Conference on Scientific Aspects of Coral Reef Assessment, Monitoring, and Restoration. Bulletin of Marine Science 69(2).

    Google Scholar 

  • Newell, R. I. E., R. R. Hood, E. W. Koch & R. E. Grizzle, 2003. Modeling the effects of changes in turbidity on light available for submerged aquatic vegetation. Final Report. NOAA/UNH Cooperative Institute for Coastal and Estuarine Environmental Technology. University of New Hampshire, Durham.

    Google Scholar 

  • NOAA Restoration Center, 2004. Restoring Coastal and Marine Habitats. U. S. National Oceanic and Atmospheric Administration, Fisheries Office of Habitat Conservation. Silver Spring, Maryland: 16 pp.

    Google Scholar 

  • OSPAR Commission, 1999. OSPAR Guidelines on Artificial Reefs in Relation to Living Marine Resources. OSPAR Commission, London. OSPAR 99/15/1-E, Annex 6.

    Google Scholar 

  • OSPAR Commission, 2000. OSPAR Quality Status Report 2000: Region II — Greater North Sea. OSPAR Commission, London: xiii + 136 pp.

    Google Scholar 

  • Pauly, D., V. Christensen, J. Dalsgaard, R. Froese & F. Torres Jr., 1998. Fishing down marine food webs. Science 279: 860–863.

    Article  CAS  Google Scholar 

  • Pitcher, T. J., R. Watson, N. Haggan, S. Guenette, R. Kennish, R. Sumaila, D. Cook, K. Wilson & A. Leung, 2001. Marine reserves and the restoration of fisheries and marine ecosystems in the South China Sea. Bulletin of Marine Science 66(3): 543–566.

    Google Scholar 

  • Pitcher, T. J., E. A. Buchary & T. Hutton, 2002. Forecasting the benefits of no-take human-made reefs using spatial ecosystem simulation. ICES Journal of Marine Science 59(Supplement): S17–S26.

    Article  Google Scholar 

  • Proffitt, E., 2004. Book review: Handbook of ecological restoration. Restoration Ecology 12(1): 143–144.

    Article  Google Scholar 

  • Reed, D., 2002. Giant kelp. In Reed, D., S. Schroeterand & M. Page (eds) Proceedings from the Second Annual Public Workshop for the SONGS Mitigation Project. Report to the California Coastal Commission. University of California, Santa Barbara. Marine Science Institute,: 62–85.

    Google Scholar 

  • Reed, D., S. Schroeterand & M. Page (eds), 2002. Proceedings from the Second Annual Public Workshop for the SONGS Mitigation Project. Report to the California Coastal Commission. University of California, Santa Barbara. Marine Science Institute.

    Google Scholar 

  • SER (Society for Ecological Restoration International Science & Policy Working Group), 2004. The SER International Primer on Ecological Restoration. Tucson, Arizona.

    Google Scholar 

  • Spalding, M. D., C. Ravilious & E. P. Green, 2001. World Atlas of Coral Reefs. University of California Press, Berkeley,: 424 pp.

    Google Scholar 

  • Turner, R. E., N. N. Rabalais, E. M. Swenson, M. Kasprzak & T. Romaire, 2004. Summer hypoxia in the northern Gulf of Mexico and its prediction from 1978 to 1995. Marine Environmental Research 59(1):65–77.

    Article  Google Scholar 

  • USACOE (U.S. Army Corps of Engineers), 1999. Central and South Florida Comprehensive Review Study Final Feasibility Report and Programmatic Environmental Impact Statement. Restoration Program Office, West Palm Beach, Florida.

    Google Scholar 

  • United States Coral Reef Task Force, 2000. The National Action Plan to Conserve Coral Reefs. Washington, D.C.

    Google Scholar 

  • Waters, E., 1999. Principles of estuarine habitat restoration. Report on the RAE-ERF Partnership. Estuarine Research Foundation, Port Republic, Maryland,: 24 pp.

    Google Scholar 

  • Wilson, K. D. P., A. W. Y. Leung & R. Kennish, 2002. Restoration of Hong Kong fisheries through deployment of artificial reefs in marine protected areas. ICES Journal of Marine Science 59(Supplement):S157–S163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Seaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this paper

Cite this paper

Seaman, W. (2007). Artificial habitats and the restoration of degraded marine ecosystems and fisheries. In: Relini, G., Ryland, J. (eds) Biodiversity in Enclosed Seas and Artificial Marine Habitats. Developments in Hydrobiology, vol 193. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6156-1_13

Download citation

Publish with us

Policies and ethics