Skip to main content

Preventing Genetic Pollution and the Establishment of Feral Populations: A Molecular Solution

  • Chapter
Book cover Ecological and Genetic Implications of Aquaculture Activities

Aquaculture animals that escape from farms have the potential to create major environmental problems. These include establishment of potentially destructive feral populations (e.g., Pacific oysters [Crassostrea gigas] in Australia, Atlantic salmon [Salmo salar] in British Columbia) and genetic contamination of wild stocks. The latter includes introgression of foreign genes into natural populations from both hatchery-reared fish and genetically modified fish and invertebrates. Concern about these environmental and genetic effects has already led to restrictions on aquaculture industry development and is likely to grow as demand for genetically improved stocks escalates to fulfill production objectives. To circumvent these problems, we have developed a genetic construct that, when properly integrated into production-line fish or invertebrates, should render individuals functionally sterile outside of hatchery conditions. In the hatchery, however, provision of a simple repressor compound at a particular life-history stage allows the animals to be bred and reared as normal. We are developing this “Sterile Feral” technology for both invertebrate and fish species, and we anticipate practical commercial application within a few years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bosher, J.M., and M. Labouesse. 2000. RNA interference: genetic wand and genetic watchdog. Nature Cell Biology 2: 31–36.

    Article  Google Scholar 

  • Davis, P.R. 1996. Parliamentary Investigation into the Farming of Pacific Oysters in Victorian Coastal Waters. Department of Natural Resources and Environment, Victoria, Australia. 84 pp.

    Google Scholar 

  • Fire, A., S. Xu, M.K. Montogomery, S.A. Kostas, S.E. Driver, and C.C. Mello. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811.

    Article  CAS  PubMed  Google Scholar 

  • Gossen, M., and H. Bujard. 1992. Tight control of gene expression in mammalian cells by tetracycline responsive promoters. Proceedings of the National Academy Sciences, USA 89: 5547–5551.

    Article  CAS  Google Scholar 

  • Gossen, M., S. Freundlieb, G. Bender, G. Muller, W. Hillen, and H. Bujard. 1995. Transcriptional activation by tetracycline in mammalian cells. Science 268: 1766–1769.

    Article  CAS  PubMed  Google Scholar 

  • Guo, X., and S.K. Allen, Jr. 1994a. Viable tetraploids in the Pacific oyster (Crassostrea gigas Thunberg) produced by inhibiting polar body 1 in eggs from triploids. Molecular Marine Biology and Biotechnology 3: 42–50.

    Google Scholar 

  • Guo, X., and S.K. Allen, Jr. 1994b. Reproductive potential and genetics of triploid Pacific oysters, Crassostrea gigas (Thunberg). Biological Bulletin 187: 309–318.

    Article  Google Scholar 

  • Guo, X., and S.K. Allen, Jr. 1997. Sex and meiosis in the autotetraploid Pacific oyster, Crassostrea gigas (Thunberg). Genome 40: 397–405.

    Article  CAS  PubMed  Google Scholar 

  • Guo, X., G.A. DeBrosse, and S.K. Allen, Jr. 1996. All-triploid Pacific oysters (Crassostrea gigas Thunberg) produced by mating tetraploids and diploids. Aquaculture 142: 149–161.

    Article  Google Scholar 

  • Hindar, K. 1999. Introductions at the level of genes and populations. In: O.T. Sandlund, P.J. Schei, and A. Viken (eds.), Invasive Species and Biodiversity Management. Kluwer Academic Publishers, Dordrecht, The Netherlands. Pp. 149–161.

    Google Scholar 

  • Hindar, K., N. Ryman, and F. Utter. 1991. Genetic effects of cultured fish on natural fish populations. Canadian Journal of Fisheries and Aquatic Sciences 48: 945–957.

    Article  Google Scholar 

  • Holliday, J.E., and J.A. Nell. 1987. The Pacific oyster in New South Wales. AGFACT F2.1.3, Department of Agriculture, Sydney, New South Wales, Australia. 4 pp.

    Google Scholar 

  • Izant, J.G., and H. Weintraub. 1984. Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis. Cell 36: 1007–1015.

    Article  CAS  PubMed  Google Scholar 

  • Jousson, O., J. Pawlowski, L. Zaninetti, A. Meinez, and C.F. Boudouresque. 1998. Molecular evidence for the aquarium origin of the green alga Caulerpa taxifolia introduced to the Mediterranean Sea. Marine Ecology Progress Series 172: 275–280.

    Article  Google Scholar 

  • Kistner, A., M. Gossen, F. Zimmermann, J. Jerecic, C. Ullmer, H. Lubbert, and H. Bujard. 1996. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proceedings of the National Academy of Sciences, USA 93: 10933–10938.

    Article  CAS  Google Scholar 

  • Masood, E. 1999. Compromise sought on “Terminator”. Nature 399: 721.

    Article  CAS  Google Scholar 

  • Medcof, J.C., and P.H. Wolf. 1975. Spread of Pacific oyster worries NSW culturists. Australian Fisheries 34: 32–38.

    Google Scholar 

  • Meinez, A. 1999. Killer Algae. University of Chicago Press, Chicago, Illinois, USA. 360 pp.

    Google Scholar 

  • Meinez, A., J.-M. Cottalorda, D. Chiaverini, N. Cassar, and J. de Vaugelas. 1998. Suivi de L'invasion de L'algue Tropicale Caulerpa taxifolia en Méditerranée: Situation au 31 Décembre 1997. Laboratoire Environnement Marin Littoral, University of Nice-Sophia, Antipolis, France. 238 pp.

    Google Scholar 

  • Naylor, R.L., R.J. Goldburg, J.H. Primavera, N. Kautsky, M.C.M. Beveridge, J. Clay, C. Folke, J. Lubchenco, H. Mooney, and M. Troel. 2000. Effect of aquaculture on world fish supplies. Nature 405: 1017–1024.

    Article  CAS  PubMed  Google Scholar 

  • Niiler, E. 1999. Terminator technology temporarily terminated. Nature Biotechnology 17: 1054.

    Article  CAS  PubMed  Google Scholar 

  • Niiler, E. 2000. FDA, researchers consider first transgenic fish. Nature Biotechnology 18 (2): 143.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, M.J., J.E. Quisenberry, N.L.G. Trolinder, D.L. Keim. 1998. Control of plant gene expression. United States Patents 5: 723–765.

    Google Scholar 

  • Pauly, D., V. Christensen, J. Dalsgaard, R. Froese, and F. Torres, Jr. 1998. Fishing down marine food webs. Science 279: 860–863.

    Article  CAS  PubMed  Google Scholar 

  • Reichhardt, T. 2000. Will souped-up salmon sink or swim? Nature 406: 10–12.

    Article  CAS  PubMed  Google Scholar 

  • Saegrov, H., K. Hindar, S. Kalas, and H. Lura. 1997. Escaped farmed Atlantic salmon replace the original salmon stocks in the River Vosso, western Norway. ICES Journal of Marine Science 54: 1166–1172.

    Google Scholar 

  • Service, R.F. 1998. Seed-sterilizing “terminator technology” sows discord. Science 28: 850–851.

    Article  Google Scholar 

  • Stoffregen, D.A., P.R. Bowser, and J.G. Babish. 1996. Antibacterial chaemotherapeutants for finfish aquaculture: a synopsis of laboratory and field efficacy and safety studies. Journal of Aquatic Animal Health 8: 181–207.

    Article  Google Scholar 

  • Sumner, C.E. 1974. Oysters and Tasmania, Part 2. Tasmanian Fisheries Research 3: 1–12.

    Google Scholar 

  • Thomas, D.D., C.A. Donelly, R.J. Wood, and L.S. Alphey. 2000. Insect population control using a dominant, repressible, lethal genetic system. Science 287: 2474–2476.

    Article  CAS  PubMed  Google Scholar 

  • Thomson, J.M. 1952. The acclimatization and growth of the Pacific oyster (Gryphaea gigas) in Australia. Australian Journal of Marine and Freshwater Research 3: 64–73.

    Article  Google Scholar 

  • Thomson, J.M. 1959. The naturalization of the Pacific oyster in Australia. Australian Journal of Marine and Freshwater Research 10: 144–149.

    Article  Google Scholar 

  • van Gelder, T. 1998. Oysters un-natural. The Weekend Australian, August 1–2, 1998.

    Google Scholar 

  • Waterhouse, P.M., M.W. Graham, and M.B. Wang. 1998. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences, USA 95: 13959–13964.

    Article  CAS  Google Scholar 

  • Xie, Y., X. Chen, and T.E. Wagner. 1997. A ribozyme-mediated, gene “knockdown” strategy for the identification of gene function in zebrafish. Proceedings of the National Academy of Sciences, USA 95: 13777–13781.

    Article  Google Scholar 

  • Yin-Xiong, L., M.J. Farell, R. Lie, N. Mohanty, and M.L. Kirby. 2000. Double-stranded RNA injection produces null phenotypes in zebrafish. Developmental Biology 217: 394–405.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Grewe, P.M. et al. (2007). Preventing Genetic Pollution and the Establishment of Feral Populations: A Molecular Solution. In: Bert, T.M. (eds) Ecological and Genetic Implications of Aquaculture Activities. Methods and Technologies in Fish Biology and Fisheries, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6148-6_6

Download citation

Publish with us

Policies and ethics