Anisotropic Behaviour of Sand in the Small Strain Domain. Experimental Measurements and Modelling

  • A. Ezaoui
  • H. Di Benedetto
  • D. Van Bang
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 146)


This paper deals with the initial and loading path induced anisotropy for a sub angular granular material, Hostun sand. The “quasi” elastic properties observed in the small strain domain (<10−5 m/m) are considered. A “static and dynamic” triaxial device is used for the experimental campaign. First, the five parameters of the transverse isotropic elastic compliance tensor are experimentally obtained. The experimental investigations consist in applying small axial cyclic loadings (strain amplitude cycle εsa≅ 10−5 m/m) and four types of dynamic wave propagations, generated by piezoelectric sensors (compressive and shear waves in axial and radial directions). The followed isotropic and deviatoric stress path underlines the effects of respectively inherent and induced anisotropy. A rheological hypoelastic model, called DBGS model, which takes into account the stress induced anisotropy, is firstly described. This model is not sufficient to properly describe experimental results at isotropic stress state as well as thus obtained during deviatoric stress path for medium and large strain. Then, an extension of the model is proposed, called DBGSP model, where strain induced anisotropy is taken into account. The concept of virtual strain induced anisotropy is introduced in this rheological hypoelastic model developed at ENTPE, and the ability of the model to foresee experimental behaviour is checked.


granular media sand small strain hypoelasticity anisotropy wave propagations local measurements triaxial device 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anhdan, L., Koseki, J. (2005). “Small strain behaviour of dense granular soils by true triaxial tests.” Soils and Foundations 45(3): 21–38.Google Scholar
  2. Belloti, R. J., M., Lo Presti, D.C.F, O’neill, D.A. (1996). “Anisotropy of small strain stiffness in Ticino sand.” Geotechnique 46(1): 115–131..CrossRefGoogle Scholar
  3. Brignoli, E., Gotti, M., Stokoe, K.H. (1996). “Measurements of shear waves in laboratory specimen by means of piezoelectric transducers.” Geotechnical Testing Journal 19(4): 384–397.CrossRefGoogle Scholar
  4. Cazacliu, B. (1996). Comportement des sables en petites et moyennes déformations prototype d’essai de torsion compression sur cylindre creux. Lyon, Ecole doctorale MEGA, INSA: 241.Google Scholar
  5. Di Benedetto, H. (1997). Viscous effect and anisotropy for sand. (Panel discussion). Proc. of the 15th Int. Conf. of Soils Mechanics and Foundation Engineering, Hamburg.Google Scholar
  6. Di Benedetto, H., Geoffroy H., Duttine, A., Sauzéat, C. (2005). Anisotropic behaviour of soils and site investigation based on wave propagation tests. (In french). 16th Int. Conf. on Soils Mechanics and Geotechnical Engineering., Osaka.Google Scholar
  7. Di Benedetto, H., Sauzéat C., Geoffroy H. (2001). Hollow cylinder test and modelling of prefailure behaviour of sand. Proc. of the 2nd Int. Conference Albert Caquot, Paris.Google Scholar
  8. Duttine, A. (2005). Comportement des sables et des mélanges sable/argile sous sollicitations statiques et dynamiques avec et sans “rotations d’axes”. Lyon, Ecole doctorale MEGA, INSA: 317.Google Scholar
  9. Fioravante, V., Capoferri, R. (2001). “On the use of multi-directional piezoelectric transducers in triaxial testing.” Geotechnical Testing Journal 24(3): 243–255..CrossRefGoogle Scholar
  10. Hardin, B. O., Blandford, G.E. (1989). “Elasticity of particulate materials.” Journal of Geotechnical Engineering 115(6): 788–805.CrossRefGoogle Scholar
  11. Hoque, E., Tatsuoka, F. (1998). “Anisotropy in the elastic deformation of granular materials.” Soils and Foundations 38(1): 163–179.CrossRefGoogle Scholar
  12. Ibrahim, A. A., Kagawa, T. (1991). “Microscopic measurement of sand fabric from cyclic tests causing liquefaction.” Geotechnical Testing Journal 14(4): 371–382..CrossRefGoogle Scholar
  13. Kuwano, R., Connoly, T.M., Jardine, R.J. (1991). “Anisotropic stiffness measurements in a stress-path triaxial cell.” Geotechnical Testing Journal 23(2): 141–157.Google Scholar
  14. Oda, M. (1972). “Initial fabrics and their relations to mechanical properties of granular materials.” Soils and Foundations 12(1): 17–36.CrossRefGoogle Scholar
  15. Pham Van Bang, D. (2004). Comportement instantané et différé des sables des petites aux moyennes déformations: expérimentation et modélisation. Lyon, Ecole doctorale MEGA, INSA: 238.Google Scholar
  16. Pham Van Bang, D., Di Benedetto H., Duttine, A., Ezaoui, A. (2006). “Viscous behaviours of dry sand.” IJANMG / to be published.Google Scholar
  17. Sauzéat, C. (2003). Comportement des sables dans le domaine des petites et moyennes déformations. Lyon, Ecole doctorale MEGA, INSA: 331.Google Scholar
  18. Tatsuoka, F., Jardine, R.J., Lo Presti, D., Di Benedetto, H., Kodata, T. (1997). Characteristing the Pre-Failure Deformation Properties of Geomaterials. XIV ICSMFE, Hamburg.Google Scholar
  19. Tatsuoka, F., Shibuya, S. (1991). Deformation characteristics of soils and rocks from field and laboratory test. Proc. of the 9th Asian Regional Conf. on SMFE, Bangkok.Google Scholar
  20. Viggiani, G., Atkinson, J.H. (1995). “Stiffness of fine grained at very small strains.” Geotechnique 45(2): 249–265.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • A. Ezaoui
    • 1
  • H. Di Benedetto
    • 1
  • D. Van Bang
    • 2
  1. 1.Département Génie Civil et Bâtiment, CNRS URA 1652Ecole Nationale des Travaux Publics de l’Etat (ENTPE)Vaulx en Velin cedex
  2. 2.Laboratoire National d’Hydraulique et d’Environnement (LNHE)Chatou Cedex

Personalised recommendations