Skip to main content

Characterization of Soil Deposits for Seismic Response Analysis

  • Conference paper
Book cover Soil Stress-Strain Behavior: Measurement, Modeling and Analysis

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 146))

Abstract

The paper critically reviews in situ and laboratory testing methods used to characterize soil deposits for seismic response analyses. Cyclic loading triaxial tests (CLTX), Cyclic loading torsional shear tests (CLTST) and Resonant column tests (RCT) are considered. As for the in situ testing, geophysical seismic tests and dynamic penetration tests are discussed. Influence of ground conditions on seismic response analyses in a number of real cases is shown. The database made available by the Regional Government of Tuscany (RT) has been used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K., 1988. Local Site Effects on Strong Ground Motion. J. Lawrence Van Thun (Ed.), Earthquake Engineering and Soil Dynamic II-Recent Advances in Ground-Motion Evaluation, ASCE Geotechnical Special Publication No 20, pp. 103–155, Park City, Utah, USA.

    Google Scholar 

  • Alarcon-Guzman A., Chameau J.L. & Leonards G.A., 1986. A New Apparatus for Investigating the Stress-Strain Characteristics of Sands. Geotechnical Testing Journal, 9(4): 204–212

    Article  Google Scholar 

  • Ampadu S.K. & Tatsuoka F., 1993. A Hollow Cylinder Torsional Simple Shear Apparatus Capable of a Wide Range of Shear Strain Measurement. Geotechnical Testing Journal, 16(1): 3–17

    Article  Google Scholar 

  • Bardet, J.P., Ichii, K. & Lin C.H., 2000. EERA — A Computer Program for Equivalent-Linear Earthquake Site Response Analyses of Layered Soil Deposits. Department of Civil Engineering, University of Southern California, http://geoinfo.usc.edu/gees.

  • Bellotti R., Bizzi G. & Ghionna V.N. 1982 Design, Construction and Use of a Calibration Chamber. Proc. II European Symposium on Penetration Testing. Amsterdam, Balkema, Vol. 2, pp: 439–446

    Google Scholar 

  • Berardi R. & Lancellotta R., 1991. Stiffness of Granular Soils from Field Performance. Géotechnique, 1: 149–157

    Article  Google Scholar 

  • BurLand J.B. & Burbridge M.C., 1985. Settlement of Foundations on Sand and Gravel. Proc. I.C.E., 78,1: 1325

    Google Scholar 

  • Calosi E., Ferrini M., Cancelli A., Foti S., Lo Presti D., Pallara O., D’Amato Avanzi G., Pochini A., Puccinelli A., Luzi L. Rainone M. & Signanini P., 2001. Geological and Geotechnical investigations for the seismic response analysis at Castelnuovo Garfagnana in Central Italy. XV ICSMGE, Istanbul 27–31 August 2001, Special Volume of TC4, Lessons Learned from Recent Strong Earthquakes. pp 141–148.

    Google Scholar 

  • Cascante G., Vanderkooy J. & Chung W., 2003. Difference between Current and Voltage Measurements in Resonant Column Testing. Canadian Geotechnical Journal, Vol. 40(4): 806–820.

    Article  Google Scholar 

  • Cavallaro A., Lo Presti D.C.F., Maugeri M. & Pallara O., 1998. Strain Rate Effect on Stiffness and Damping of Clays. Italian Geotechnical Review, XXXII(4): 30–49

    Google Scholar 

  • Cazacliu B., 1996. Comportment des sables en petites et moyennes déformations; réalisation d’un prototype d’essai de torsion compression confinement sur cylindre creux. Doctorat, ECP-ENTPE, Paris

    Google Scholar 

  • Constantopoulos I.V., Roësset J.M. & Christian J.T., 1973. A Comparison of Linear and Exact Nonlinear Analysis of Soil Amplification. 5th WCEE, Roma, pp: 1806–1815

    Google Scholar 

  • Cubrinovski M. & Ishihara K., 1999. Empirical Correlation between SPT N-value and Relative Density of Sandy Soils. Soils and Foundations. 5: 61–71

    Article  Google Scholar 

  • Di Benedetto H., Cazacliu B., Boutin C., Donah T & Touret J.P., 1997. Comportement des sables avec rotation d’axes. XIV ICSMFE, Hamburg, Balkema, 1: 279–282

    Google Scholar 

  • d’Onofrio A. Silvestri F. & Vinale F., 1999. Strain rate dependent behaviour of a natural stiff clay. Soils and Foundations. 39(2):69–82.

    Article  Google Scholar 

  • Drnevich V.P., 1978. Resonant Column Testing-Problems and Solutions. Dynamic Geotechnical Testing ASTM STP 654. pp: 384–398

    Google Scholar 

  • EBC, 1998. Eurocode 8. Design Provisions for Earthquake Resistance of Structures — Part 1-1: General Rules for the Representation of Seismic Actions. Part 5: Foundations, Retaining Structures and Geotechnical Aspects.

    Google Scholar 

  • Evans, M.D., 1987. Undrained cyclic triaxial testing of gravels: the effect of membrane compliance. Ph.D Dissertation, University of California at Berkeley

    Google Scholar 

  • Faccioli, E., 1991. Seismic Amplification in the Presence of Geological and Topographic Irregularities. Proceedings International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, pp. 1779–1797.

    Google Scholar 

  • Ferrini M. (coord.), Foti S., Lo Presti D., Luzi L., Pergalani F. Petrini V. Pochini A., Puccinelli A., Signanini P. & Socco V., 2000. La riduzione del rischio sismico nella pianificazione del territorio: le indagini geologico tecniche e geofisiche per la valutazione degli effetti locali, CISM, Lucca 3–6 Maggio 2000.

    Google Scholar 

  • Fioravante V., Jamiolkowski M. & Lo Presti D.C.F., 1994. Stiffness of Carbonatic Quiou Sand. Proceedings of the XIII ICSMFE, New Delhi, India, 1: 163–167

    Google Scholar 

  • Fioravante V., Ghionna V.N., Jamiolkowski M. & Pedroni S., 1998. Stiffness of Carbonatic Quiou Sand from CPT. ISC 98, Atlanta GA. Balkema Vol. 2, pp:1039–1049.

    Google Scholar 

  • Gabrielaitis L., Jamiolkowski M. Lo Presti D. & Puci I., 2000. Operational sand stiffness from large scale load tests on reconstituted sand beds. Baltic Geotechnics IX 2000, Pärnu, Estonia 9–12 May 2000. Estonian Geotechnical Society. Published by Akadeemia Trükk, Niine, 10414 Tallinn, Estonia. pp: 84–91, paper 1.14.

    Google Scholar 

  • Ghionna, V.N. Jamiolkowski, M. Pedroni, S. & Salgado, R., 1994. The tip displacement of drilled shafts in sands. Settlement 94, ASCE Specialty Conference.

    Google Scholar 

  • Gomes Correja A. & Gillet S., 1996. A large triaxial apparatus for the study of granular materials under repeated loading used at LNEC. Proc. of the European Symposium Eurofles 1993, Lisbon, Balkema. 45–52

    Google Scholar 

  • Goto, S., Shamoto, Y. & Tamaoki, K., 1987. Dynamic properties of undisturbed gravel sample by the in situ frozen. Proc.8th ARCSMFE, No. 1, pp 233–236

    Google Scholar 

  • Goto, S., F. Tatsuoka, S. Shibuya, Y.S. Kim & Sato T., 1991. A simple gauge for local small strain measurements in the laboratory. Soils and Foundations: 31(1): 169–180

    Article  Google Scholar 

  • Goto, S., Suzuki, Y., Nishio, S. & Oh Oka, H., 1992. Mechanical properties of undisturbed Tone-river gravel obtained by in situ freezing method. Soils and Foundations, No. 3, pp.15–25

    Google Scholar 

  • Goto S., Nishio, S. & Yoshimi, Y., 1994. Dynamic properties of gravels sampled by ground freezing. Ground failures under seismic conditions, GSP No. 44, ASCE, pp.141–157

    Google Scholar 

  • Hatanaka, M., Suzuki, Y., Kawasaki, T. & Endo, M., 1988. Cyclic undrained shear properties of high quality undisturbed Tokyo gravel. Soil and Foundations, No. 4, pp.57–68

    Google Scholar 

  • Hatanaka, M. & Uchida, A., 1995. Effects of test methods on the cyclic deformation characteristics of high quality undisturbed gravel samples. GSP No. 56, ASCE, pp.136–151

    Google Scholar 

  • Hight D.W., Gens A. & Symes M.S., 1983. The Development of a New Hollow Cylinder Apparatus for Investigating the Effects of Principal Stress Rotation in Soils. Géotechnique, 33(4): 355–383

    Article  Google Scholar 

  • Hynes, M.L., 1988. Pore pressure generation characteristics of gravel under undrained cyclic loading. Ph.D. Dissertation, University of California, Berkeley

    Google Scholar 

  • ICBO, 2000. International Building Code, International Code Council (ICC), WEB site address: http://www.icbo.org/

  • Ionescu F., 1999. Comportamento sforzi-deformazioni della sabbia di Toyoura da prove di taglio torsionale in condizioni di carico monotono e ciclico. Ph.D. Thesis, Politecnico di Torino Department of Structural and Geotechnical Engineering

    Google Scholar 

  • Isenhower W. M., Stokoe K. H. II & Allen J. C., 1987. Instrumentation for Torsional Shear Resonant Column Measurements Under Anisotropic Stresses. Geotechnical Testing Journal, 10(4): 183–191

    Article  Google Scholar 

  • Kim D-S. & Stokoe K.H. II, 1994. Torsional Motion Monitoring System for Small Strain (10−5 to 10−3) Soil Testing. Geotechnical Testing Journal. 17(1): 17–26.

    Article  Google Scholar 

  • Kokusho, T. & Tanaka, Y. 1994. Dynamic properties of gravel layers investigated by Insitu freezing sampling. Ground failures under seismic conditions, GSP No. 44, ASCE, pp.121–140

    Google Scholar 

  • Lai C.G. & Rix G.J., 1998. Simultaneous Inversion of Rayleigh Phase Velocity and Attenuation for Near Surface Site Characterization. GIT-CEE/GEO-98-2, School of Civil and Environmental Engineering, Georgia Institute of Technology.

    Google Scholar 

  • Lai C.G., Pallara O., Lo Presti D. C. F. & Turco E., 2001. Low-strain stiffness and material damping ratio coupling in soils. XV ICSMGE, Istanbul 27–31 August 2001, Special Volume of TC29, Advanced Laboratory stress-strain testing of geomaterials. F. Tatsuoka, S. Shibuya and R. Kuwano Eds. Balkema pp 265–274.

    Google Scholar 

  • Lai C., Strobbia C., Dall’ara, 2005. Elaborazione di raccomandazioni e di linee guida per la definizione dell’input sismico e delle modellazioni da adottare nei territori della Regione Toscana nell’ambito dei progetti VEL-Parte 1. Eucentre Pavia Report

    Google Scholar 

  • Lo Presti D.C.F., Pallara O, Lancellotta R., Armandi M. & Maniscalco R., 1993. Monotonic and Cyclic Loading Behaviour of Two Sands at Small Strains. Geotechnical Testing Journal, 16(4): 409–424.

    Article  Google Scholar 

  • Lo Presti D.C.F., Jamiolkowski M., Pallara O. & Cavallaro A., 1996. Rate and Creep Effect on the Stiffness of Soils. GSP No. 61, ASCE: 166–180

    Google Scholar 

  • Lo Presti D.C.F., Pallara O. & Cavallaro A., 1997. Damping Ratio of Soils from Laboratory and In-Situ Tests Proc. XIV ICSMFE, Seismic Behaviour of Ground and Geotechnical Structures, Balkema, Rotterdam: 391–400

    Google Scholar 

  • Lo Presti D.C.F. & Puci I., 2001. Impiego delle prove penetrometriche dinamiche per la caratterizzazione meccanica dei terreni. XVIII Ciclo delle Conferenze di Geotecnica di Torino

    Google Scholar 

  • Lo Presti D.C.F., Shibuya S. & Rix G., 2001. Innovation in Soil Testing. Proc. of 2nd Int. Symposium on Pre-Failure Deformation Characteristics of Geomaterials, Torino 27–30 September 1999, Balkema, Vol. 2, 1027–1076.

    Google Scholar 

  • Lo Presti D., Luzi L., Pergalani F., Petrini V., Puci I & Signanini P. 2002 Determinazione della risposta sismica dei terreni a Castelnuovo Garfagnana (Lucca), Rivista Italiana di Geotecnica. XXXVI,n. 3, pp. 61–74.

    Google Scholar 

  • Lo Presti D., Lai C. & Foti S., 2004. Geophysical and Geotechnical Investigations for ground response analyses. Recent Advances in Earthquake Geotechnical Engineering and Microzonation, Kluwer Academic Publisher, Editor A. Ansal, Capitolo di un libro. pp: 101–138.

    Google Scholar 

  • Lo Presti D., Pallara O., Froio F., Rinolfi A. & Jamiolkowski M., 2005. Stress-Strain-Strength Behaviour of Undisturbed and Reconstituted Gravely Soil Samples. Submitted to Italian Geotechnical Review for possible publication, September 2005

    Google Scholar 

  • Marchetti S., 2005. Shear Wave velocity (Vs) measurement, using a seismic DMT. Workshop 12 April 2005, University of Pisa.

    Google Scholar 

  • Meng J. & Rix G.J., 2003. Reduction of Equipment —Generated Damping in Resonant Column. Géotechnique, Vol LIII(5):503–512.

    Article  Google Scholar 

  • Meng J. & Rix G.J., 2004. Reduction of Equipment-Generated Damping in the Low Frequency Range. Géotechnique, Vol LIV(3):219–222.

    Article  Google Scholar 

  • Mensi E., Lai C., Spallarossa D. Pallara O. & Lo Presti D., 2004. Risposta sismica in alcune aree della Toscana: un confronto con le indicazioni dell’Ordinanza dell’OPCM 3274. Politecnico di Torino, Department of Structural and Geotechnical Engineering Report.

    Google Scholar 

  • Miura K., Miura S & Toki S., 1986. Deformation Behaviour of Anisotropic Dense Sand Under Principal Stress Axes Rotation. Soils and Foundations. 26(1) 36–52.

    Article  Google Scholar 

  • Mussa M., 2004. Calcolo dei cedimenti delle fondazioni superficiali nei terreni granulari mediante la prova CPT. B. Sc. Thesis. Politecnico di Torino, II Faculty of Engineering in Vercelli.

    Google Scholar 

  • Nicholson, P.G., Seed, R.B. & Anwar, H.A., 1993a. Elimination of membrane compliance in undrained triaxial testing. I. Measurement and evaluation. Canadian Geotechnical Journal, pp.727–738

    Google Scholar 

  • Nicholson, P.G., Seed, R.B. & Anwar, H.A., 1993b. Elimination of membrane compliance in undrained triaxial testing. II. Mitigation by injection compensation. Canadian Geotechnical Journal, pp.739–746

    Google Scholar 

  • Norme Tecniche per le Costruzioni, 2005. Ministero delle Infrastrutture e dei Trasporti. Decreto 14 Settembre 2005.

    Google Scholar 

  • OPCM 3274, 2003. Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica. Gazzetta Ufficiale della Repubblica Italiana 8 maggio 2003, n. 108

    Google Scholar 

  • Ohta Y. & Goto N., 1978. Empirical Shear Wave Velocity Equations in Terms of Characteristic Soil Indexes. Earthquake Engineering and Structural Dynamics. 6

    Google Scholar 

  • Pagani, 2005. http://www.pagani-geotechnical.com/italiano/RendimentoDP/Renddp.htm#INI

  • Pallara O., 1995. Comportamento sforzi-deformazioni di due sabbie soggette a sollecitazioni monotone e cicliche. Ph. D. Thesis, Department of Structural Engineering, Politecnico di Torino

    Google Scholar 

  • Papa V., Silvestri F. & Vinale F., 1988. Analisi delle Proprietà di un Tipico Terreno Piroclastico mediante Prove di taglio Semplice. Proc. Gruppo Nazionale di Coordinamento per gli Studi di Ingegneria Geotecnica. Monselice, Italy, 1: 265–286

    Google Scholar 

  • Pergalani F., Romeo R., Luzi L., Petrini V., Pugliese A. & Sano T., 1999. Seismic microzoning of the area struck by Umbria-Marche (Central Italy) Ms 5.9 earthquake of 26 september 1997. Soil Dyn. and Earth. Eng. 18, pp. 279–296.

    Article  Google Scholar 

  • Porovic E. & Jardine R., 1994. Some observations on the static and dynamic shear stiffness of Ham River sand IS Hokkaido 1994, Balkema, 1: 25–30

    Google Scholar 

  • Pradhan T.B.S., Tatsuoka F. & Horii, N., 1988. Strength and Deformation Characteristics of Sand in Torsional Simple Shear Soils and Foundations, 28(3): 131–148

    Article  Google Scholar 

  • Rix G.J. & Meng J., 2005. A Non-Resonance Method for Measuring Dynamic Soil Properties. Geotechnical Testing Journal, Vol 28,No. 1

    Google Scholar 

  • Rollins, K., Evans, M.D., Dhiel, N.B. & Daily, W.D., 1998a. Shear modulus and damping relationships for gravels. JGGE, ASCE, No. 5, pp.396–405

    Google Scholar 

  • Schnaid F., 1997. Panel Discussion. Evaluation of in situ tests in cohesive frictional materials. 14th Int. Conf. on SMGE. Hamburg. 4: 2189–2190

    Google Scholar 

  • Seed, H.B., Wong, R.T., Idriss, I.M. & Tokimatsu, K., 1986. Moduli and damping factors for dynamic analyses of cohesionless soils. JGE, ASCE, 11, pp.1016–1032.

    Google Scholar 

  • Shibuya S., Mitachi T., Fukuda F. & Degoshi T., 1995. Strain Rate Effect on Shear Modulus and Damping of Normally Consolidated Clay. Geotechnical Testing Journal.18(3): 365–375

    Article  Google Scholar 

  • Shibuya S. & Mitachi T., 1997. Development of a fully digitized triaxial apparatus for testing soils and soft rocks. Geotechnical Engineering. 28(2): 183–207

    Google Scholar 

  • Stokoe, K.H. II, Hwang S.K., Lee, J.N.K. & Andrus R.D. 1995. Effects of Various Parameters on the Stiffness and Damping of Soils at Small to Medium Strains. Keynote Lecture 2, IS Hokkaido. 2: 785–816. Balkema

    Google Scholar 

  • Tanaka Y., Kokusho T., Yoshida Y & Kudo K., 1991. A method for evaluating membrane compliance and system compliance in undrained cyclic shear tests. Soils and Foundations. 31(3): 30–42

    Article  Google Scholar 

  • Tanaka, Y., Kudo, K., Nishi, K., Okamoto, T., Kataoka, T. & Ueshima, T., 2000. Small Strain Characteristics of Soils in Hualien, Taiwan. Soils and Foundations, No. 3, pp. 111–126

    Google Scholar 

  • Tatsuoka F., 1988. Some recent developments in triaxial testing systems for cohesionless soils. ASTM STP 977, Advanced Triaxial Testing of Soil and Rock. pp: 7–67

    Google Scholar 

  • Tatsuoka, F., Sato, T., Park, C.S., Kim, Y.S, Mukabi, J.N. & Koha-ta, Y., 1994a. Measurements of Elastic Properties of Geomaterials in Laboratory Compression Tests. Geotechnical Testing Journal, NO1, pp.80–94

    Google Scholar 

  • Tatsuoka, F., Teachavorasinskun, S., Dong, J., Kohata, Y. & Sato, T., 1994b. Importance of measuring local strains in cyclic triaxial tests on granular materials. Proc. ASTM Symposium on Dynamic Geotechnical Testing II, STP 1213, ASTM, pp.288–302

    Google Scholar 

  • Tatsuoka F. & Kohata Y., 1995. Stiffness of Hard Soils and Soft Rocks in Engineering Applications. Keynote Lecture 8, IS Hokkaido 1994. 2: 947–1066. Balkema

    Google Scholar 

  • Tatsuoka F., Jardine R.J., Lo Presti D.C.F., Di Benedetto H. & Kodaka T., 1997. Characterising the Pre-Failure Deformation Properties of Geomaterials. Theme Lecture, Plenary Session 1, XIV ICSMFE, Hamburg, in print. Balkema

    Google Scholar 

  • Teachavorasinskun S., 1989. Deformation Characteristics of Sands at Small Strains. M.Sc. Thesis, University of Tokyo, Japan

    Google Scholar 

  • Toki S., Shibuya S. & Yamashita S., 1995. Standardization of laboratory test methods to determine the cyclic deformation properties of geomaterials in Japan. Keynote Lecture 1, IS Hokkaido: 2: 741–784, Balkema

    Google Scholar 

  • Vaid Y.P., Sayao A., Hou E. & Negussey D., 1990. Generalized stress-path-dependent soil behaviour with a new hollow cylinder torsional apparatus. Canadian Geotechnical Journal, 27: 601–616.

    Article  Google Scholar 

  • Vucetic, M. & Dobry, R. 1991. Effect of soil plasticity on cyclic response. JGE, ASCE, No.1, pp. 89–107

    Google Scholar 

  • Wang Y.-H., Cascante G. & Santamarina J.C., 2003. Resonant Column Testing: the Inherent Counter-EMF Effect. Geotechnical Testing Journal Vol. 26(3)

    Google Scholar 

  • Yamashita S. & Suzuki T., 1999. Young’s and shear moduli under different principal stress directions of sand, Proc. of IS Torino 99, Balkema, 1: 149–158

    Google Scholar 

  • Yasuda N. & Matsumoto N., 1993. Dynamic deformation characteristics of sands and rockfill materials. Canadian Geotechnical Journal, 30: 747–757

    Article  Google Scholar 

  • Yasuda, N., Otha, N. & Nakamura, A., 1994. Deformation Characteristics of Undisturbed Riverbed Gravel by In-Situ Freezin Sampling Method. Proc. Int. Symp. on Pre-Failure Deformation Characteristic of Geomaterials, IS Hokkaido’ 94 (Shibuya et al. eds.), Rotterdam: Balkema, pp.41–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Lo Presti, D., Pallara, O., Mensi, E. (2007). Characterization of Soil Deposits for Seismic Response Analysis. In: Ling, H.I., Callisto, L., Leshchinsky, D., Koseki, J. (eds) Soil Stress-Strain Behavior: Measurement, Modeling and Analysis. Solid Mechanics and Its Applications, vol 146. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6146-2_2

Download citation

Publish with us

Policies and ethics