Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 146))

Abstract

The inelastic strain characteristics of geomaterial are analysed in the framework of a non-linear three-component model while based on a number of laboratory stress-strain test results. The followings are shown. Inelastic strain increments develop by plastic yielding that is controlled by viscous effect and inviscid cyclic loading effect. Inelastic strain increments that develop by these different factors cannot be linearly summed up. The concept of double yielding consisting of shear and volumetric yielding mechanisms is relevant to describe the plastic yielding characteristics of geomaterial. Shear yielding is dominant with dense granular materials while volumetric yielding with soft clay. Three basic viscosity types, Isotach, TESRA and Positive & Negative, have been observed with different geomaterial types subjected to shearing. The viscosity type is controlled by geomaterial type in terms of grading characteristics, particle shape and particle crushability. Inviscid cyclic loading effect is analysed in relation to plastic yielding and viscous effect. The ageing effect on the inviscid shear yielding characteristics and its interactions with the viscous effect are examined and modelled. Three different types of time effect (i.e., delayed dissipation of excess pore water pressure, viscous effect or delayed development of plastic strain, and ageing effect) are involved in a complicated way in soft clay consolidation. Related some fundamental issues are analysed in the framework of the three-component model in the case of Isotach viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta-Martínez, H., Tatsuoka, F. and Li, Jiangh-Zhong (2005): “Viscous property of clay in 1-D compression: evaluation and modelling”, Proc. 16th ICSMGE, Osaka.

    Google Scholar 

  2. Anh Dan, L. Q., Tatsuoka, F., and Koseki, J. (2006): “Viscous shear stress-strain characteristics of dense gravel in triaxial compression,” Geotechnical Testing Journal, ASTM, Vol.29,No. 4, pp.330–340.

    Google Scholar 

  3. Anderson, D. G. and Woods, R. D. (1975): “Time-dependent increase in shear modulus of clay”, Jour, GE Div., Proc. ASCE, No. 102-GT5, pp.525–537.

    Google Scholar 

  4. Aqil, U., Tatsuoka, F., Uchimura, T., Lohani, T.N., Tomita, Y. and Matsushima, K. (2005): “Strength and deformation characteristics of recycled concrete aggregate as a backfill material”, Soils and Foundations, Vol.45,No. 4, pp.53–72.

    Google Scholar 

  5. Burland, J. B. (1990): “On the compressibility and shear strength of natural clays”, Rankine Lecture, Géotechnique, Vol.40,No. 3, pp.329–378.

    Article  Google Scholar 

  6. Chambon, G., Schmittbuhl, J. and Corfdir, A. (2002): “Laboratory gouge friction: seismic-like slip weakening and secondary rate-and state-effects”, Geophysical Research Letters, Vol.29,No. 10, 10.10.1029/2001GL014467, pp.4-1–4-4.

    Article  Google Scholar 

  7. Deng, J. and Tatsuoka, F. (2004): “Ageing and viscous effects on the deformation of clay in 1D compression”, Proc. of GeoFrontier 2005 Congress, GeoInstitute, ASCE, Austin, Texas, GSP 138, Site characterization and modeling (Mayne et al. eds).

    Google Scholar 

  8. Deng, J.-L. and Tatsuoka, F. (2006): “Viscous property of kaolin clay with and without ageing effects by cement-mixing in drained triaxial compression”, Soil Stress-Strain Behavior: Measurement, Modeling and Analysis, Proc. of Geotechnical Symposium in Roma, March 16 & 17, 2006 (Ling et al., eds.) (this volume).

    Google Scholar 

  9. Di Benedetto, H. and Hameury, O. (1991): “Constitutive law for granular skeleton materials: description of the anisotropic and viscous effects”, Comp. Met. and Ad. In Geomechanics (Beer et al. eds.), Rotterdam, Balkema, pp.599–603.

    Google Scholar 

  10. Di Benedetto, H. and Tatsuoka, F. (1997): “Small strain behaviour of geomaterials: modelling of strain effects”, Soils and Foundations, Vol.37,No. 2, pp.127–138.

    Article  Google Scholar 

  11. Di Benedetto, H., Tatsuoka, F. and Ishihara, M. (2002): “Time-dependent deformation characteristics of sand and their constitutive modeling”, Soils and Foundations, Vol. 42,No. 2, pp.1–22.

    Article  Google Scholar 

  12. Di Benedetto, H., Tatsuoka, F., Lo Presti, D., Sauzéat, C. and Geoffroy H. (2004): “Time effects on the behaviour of geomaterials”, Keynote Lecture,, Proc. 3rd Int. Sym. on Deformation Characteristics of Geomaterials, IS Lyon 03 (Di Benedetto et al. eds.), Balkema, September, 2003, Vol.2, pp.59–123.

    Google Scholar 

  13. Duttine, A., Kongkitkul, W., Hirakawa, D. and Tatsuoka, F. (2006): “Effects of particle properties on the viscous behaviour in direct shear of unbound granular materials”, Proc. 41st Japanese National Conference on Geotechnical Engineering, the Japanese Geotechnical Society (JGS), Kagoshima.

    Google Scholar 

  14. Enomoto, T., Tatsuoka, F., Shishime, M., Kawabe, S. and Di Benedetto. H. (2006): “Viscous property of granular material in drained triaxial compression”, Soil Stress-Strain Behavior: Measurement, Modeling and Analysis, Proc. of Geotechnical Symposium in Roma, March 16 & 17, 2006 (Ling et al., eds.) (this volume)..

    Google Scholar 

  15. Gens, A. (1986): “A state boundary surface for soils not obeying Rendulic’s principle”, Proc. 11th IC on SMFE, San Francisco, Vol.2, pp.473–476.

    Google Scholar 

  16. Hayano, K., Matsumoto, M., Tatsuoka, F. and Koseki, J. (2001): “Evaluation of time-dependent deformation property of sedimentary soft rock and its constitutive modelling”, Soils and Foundations, Vol.41,No. 2, pp. 21–38.

    Article  Google Scholar 

  17. Hayashi, T., Moriyama, M., Tatsuoka, F. and Hirakawa, D. (2005): “Residual deformations by cyclic and sustained loading of sand and their relation”, Proc. 40th Japanese National Conference on Geotechnical Engineering, JGS, Hakodate (in Japanese).

    Google Scholar 

  18. Hayashi, T., Sakurano, H, Tatuoka, F and Hirakawa, D. (2006): “Residual strains by cyclic loading effects and viscous property of various granular materials and their relation”, Proc. 41st Japanese National Conference on Geotechnical Engineering, JGS, Kagoshima (in Japanese).

    Google Scholar 

  19. 19) Henkel, D. J. (1960): “The relationships between the effective stresses and water content in saturated clays”, Géotechnique, Vol. X, pp.41–54.

    Article  Google Scholar 

  20. Henkel, D. J. and Sowa, V. A. (1963): “The influence of stress history in undrained triaxial tests on clays”, ASTM, STP361. pp.280–291.

    Google Scholar 

  21. Hirakawa, D., Kongkitkul, W., Tatsuoka, F. and Uchimura, T. (2003): “Time-dependent stress-strain behaviour due to viscous property of geosynthetic reinforcement”, Geosynthetics International, IGS, Vo.10,No. 6, pp.176–199.

    Article  Google Scholar 

  22. Hoque, E. and Tatsuoka, F. (1998): “Anisotropy in the elastic deformation of materials”, Soils and Foundations, Vol.38,No. 1, pp.163–179.

    Article  Google Scholar 

  23. Howie, J.A., Shozen, T. and Vaid, Y. P. (2001): “Effect of ageing on stiffness on loose Fraser Rover sand”, Advanced laboratory stress-strain testing of geomaterials (Tatsuoka et al. eds.), Balkema, pp.235–243.

    Google Scholar 

  24. Imai, G. (1981): “Experimental studies on sedimentation mechanism and sediment formation of clay materials”, Soils and Foundations, Vol.21,No. 1, pp.7–20.

    Article  Google Scholar 

  25. Imai, G. and Tang, X.-Y. (1992): “A constitutive equation of one-dimensional consolidation derived from interconnected tests, Soils and Foundations, Vol.32,No. 2, pp.82–96.

    Article  Google Scholar 

  26. Imai, G. (1995): “Analytical examination of the foundations to formulate consolidation phenomena with inherent time-dependence”, Keynote Lecture, Proc. Int. Symp. On Compression and Consolidation of Clayey Soils, IS Hiroshima’ 95, Rotterdam: Balkema, Vol.2, pp.891–935.

    Google Scholar 

  27. Imai, G. (2006): “Objectives, roles and perspectives of standard consolidation tests of clay in practice”, Tsuchi-to-Kiso, Monthly Journal of Japanese Geotechnical Society, Vol. 54,No. 2, pp.18–21 (in Japanese).

    Google Scholar 

  28. Ishihara, K. and Okada, S. (1978): “Effects of Stress History on Cyclic Behavior of Sand,” Soils and Foundations, Vol.18,No. 4, pp.31–45.

    Article  Google Scholar 

  29. Jardine, R., Standing, J. R. and Kovacevic, N. (2005): “Lessons learned from full scale observations and the practical application of advanced testing and modelling”, Keynote Lecture, Deformation Characterisation of Geomaterials, Proc. IS Lyon 2003 (Di Benedetto et al., eds.), Vol. 2, pp.201–245

    Google Scholar 

  30. Kawabe, S., Enomoto, T. and Tatsuoka, F. (2006): “Viscous properties of round granular material in drained triaxial compression test”, Proc. 41st Japanese National Conference on Geotechnical Engineering, JGS, Kagoshima (in Japanese).

    Google Scholar 

  31. Kiyota, T., Tatsuoka, F. and Yamamuro, J. (2005): “Drained and undrained creep characteristics of loose saturated sand and their relation”, Proc. of GeoFrontier 2005 Congress, GeoInstitute, ASCE, Austin, Texas, GSP 138, Site characterization and modeling (Mayne et al. eds).

    Google Scholar 

  32. Kiyota, T. and Tatsuoka, F. (2006), “Viscous property of loose sand in triaxial compression, extension and cyclic loading”, Soils and Foundations, Vol.46 (to appear).

    Google Scholar 

  33. Ko, D.-H., Ito. H., Tatsuoka. F. and Nishi. T. (2003): “Significance of viscous effects in the development of residual strain incyclic triaxial tests on sand”, Proc. 3rd Int. Sym. on Deformation Characteristics of Geomaterials, IS Lyon 03 (Di Benedetto et al. eds.), Balkema, September, 2003, pp.559–568.

    Google Scholar 

  34. Komoto, N., Nishi, T., Li, J.-Z. and Tatsuoka, F. (2003): “Viscous stress-strain properties of undisturbed Pleistocene clay and its constitutive modelling”, Proc. 3rd Int. Sym. on Deformation Characteristics of Geomaterials, IS Lyon 03 (Di Benedetto et al. eds.), Balkema, September, 2003, pp.579–587.

    Google Scholar 

  35. Kongkitkul, W., Hirakawa, D., Tatsuoka, F. and Uchimura, T. (2004): “Viscous deformation of geogrid reinforcement under cyclic loading conditions and its model simulation”, Geosynthetics International, Vol.GS11,No. 2, pp.73–99.

    Article  Google Scholar 

  36. Kongsukprasert, L., Kuwano, R. and Tatsuoka, F. (2001): “Effects of ageing with shear stress on the stress-strain behavior of cement-mixed sand”, Advanced Laboratory Stress-Strain Testing of Geomaterials (Tatsuoka et al. eds.), Balkema, pp.251–258.

    Google Scholar 

  37. Kongsukprasert, L., Tatsuoka, F. and Tateyama, M. (2004): “Several factors affecting the strength and deformation characteristics of cement-mixed gravel”, Soils and Foundations, Vol. 45,No. 3, pp.107–124.

    Google Scholar 

  38. Kongsukprasert, L. and Tatsuoka, F. (2005): “Ageing and viscous effects on the deformation and strength characteristics of cement-mixed gravely soil in triaxial compression”, Soils and Foundations, Vo. 45,No. 6, pp.55–74.

    Article  Google Scholar 

  39. Kuwano, R. and Jardine, R. J. (2002): “On measuring creep behaviour in granular materials through triaxial testing”, Canadian Geotechnical Journal, Voi.39,No. 5, pp.1061–1074.

    Article  Google Scholar 

  40. Lade, P. V. and Duncan, J. M. (1975): “Elasto-plastic stress-strain theory for cohesionless soil”, ASCE, Journal of Geotechnical Division, Vol.101, GT.100, 1037–1053.

    Google Scholar 

  41. Lade, P. V. (1976): “Stress-path dependent behavior of cohesionless soil”, Jour. of the Geotechnical Engineering Div., ASCE, Vol.102,No. GT1, pp.51–68.

    Google Scholar 

  42. Lade, P. V., and Liu, C. T. (1998): “Experimental study of drained creep behavior of sand”, Journal of Engineering Mechanics, ASCE124(8): 912–920.

    Article  Google Scholar 

  43. Lade, P. V. and Liu, C.-T. (2001): “Modeling creep behaviour of granular materials”, Computer Methods and Advances in Geomechanics (Desai et al. eds.), Balkema, pp.277–284.

    Google Scholar 

  44. Leroueil, S. and Marques, M. E. S. (1996): “Importance of strain rate and temperature effects in geotechnical engineering”, S-O-A Report, Measuring and Modeling Time Dependent Soil Behavior, ASCE Geotech. Special Publication 61: pp.1–60.

    Google Scholar 

  45. 45) Li, Jiangh-Zhong, Acosta-Martínez, H., Tatsuoka, F. and Deng, J.-L. (2004): “Viscous property of soft clay and its modelling”, Engineering Practice and Performance of Soft Deposits, Proc. of IS Osaka 2004, pp.1–6.

    Google Scholar 

  46. Mair, K. and Marone, C. (1999): “Friction of simulated fault gouge for a wide range of velocities and normal stresses”, Journal of Geophysical Research, Vol. 104,No.B12, pp.28,8999–28,914, December 10.

    Article  Google Scholar 

  47. 47) Matsushita, M., Tatsuoka, F., Koseki, J., Cazacliu, B., Di Benedetto, H. and Yasin, S. J. M. (1999): “Time effects on the pre-peak deformation properties of sands”, Proc. Second Int. Conf. on Pre-Failure Deformation Characteristics of Geomaterials, IS Torino’ 99 (Jamiolkowski et al., eds.), Balkema, Vol.1, pp.681–689.

    Google Scholar 

  48. Mejia, C. A., Vaid, Y. P. and Negussey, D. (1988): “Time-dependent behaviour of sand”, Proc. Int. Conf. On Rheology and Soil Mechanics (Keedwell eds.), Elsevier Applied Science, pp.312–326.

    Google Scholar 

  49. Molenkamp, F. (1980): “Elasto-plastic double hardening model MONOT”, Delft Soil Mechanics Laboratory, Report No. Co.218595.

    Google Scholar 

  50. Momoya, M. (1998): “Time effect and consolidation stress path on the deformation characteristics of clay”, Master of Engineering thesis, Department of Civil Engineering, University of Tokyo (in Japanese).

    Google Scholar 

  51. Muir-Wood, D. (1990): “Soil behaviour and critical state soil mechanics”, Cambridge University Press.

    Google Scholar 

  52. Murayama, S., Michiro, K., and Sakagami, T. (1984): “Creep characteristics of sands”, Soils and Foundations, Vol.24,No. 2, pp.1–15.

    Article  MATH  Google Scholar 

  53. Nakai, T. (1989): “An isotropic hardening elasto-plastic model for sand considering the stress path dependency in three dimensional stresses”, Soils and Foundations Vol.29,No.1, pp.119–137.

    Article  Google Scholar 

  54. Nakamura, Y., Kuwano, J. and Hashimoto, S. (1999): “Small strain stiffness and creep of Toyoura sand measured by a hollow cylinder apparatus”, Proc. of the Second International Conference on Pre-failure Deformation Characteristics of Geomaterials, Torino, 1999, Balkema (Jamiolkowski et al., eds.), Vol.1, pp.141–148.

    Google Scholar 

  55. Nawir, H., Tatsuoka, F. and Kuwano, R. (2003a): “Experimental evaluation of the viscous properties of sand in shear”, Soils and Foundations, Vol.43,No. 6, pp.13–31.

    Article  Google Scholar 

  56. Nawir, H., Tatsuoka, F. and Kuwano, R. (2003b): “Viscous effects on the shear yielding characteristics of sand”, Soils and Foundations, Vol.43,No. 6, pp.33–50.

    Article  Google Scholar 

  57. Nirmalan, S. and Uchimura, T. (2006): “Viscous properties and strength of scrapped tire chips”, Proc. 41st Japanese National Conference on Geotechnical Engineering, JGS, Kagoshima.

    Google Scholar 

  58. Oie, M, Sato, N. Okuyama. Y., Yoshida, Teru, Yoshida, Tetuya, Yamada, S., Tatsuoka, F. (2003): “ Shear banding characteristics in plane strain compression of granular materials”, Proc. 3rd Int. Symp. on Deformation Characteristics of Geomaterials, IS Lyon 03 (Di Benedetto et al. eds.), Balkema, September, 2003, pp.597–606.

    Google Scholar 

  59. Park, C.-S. and Tatsuoka, F. (1994): “Anisotropic strength and deformations of sands in plane strain compression”, Proc. of the 13th Int. Conf. on Soil Mechanics and Foundation Engineering, New Delhi, Vol.13,No. 1, pp.1–4.

    Google Scholar 

  60. Perzyna, P. (1963): “The constitutive equations for work-hardening and rate-sensitive plastic materials”, Proc. of Vibrational Problems, Warsaw, 4(3), pp.281–290.

    MathSciNet  Google Scholar 

  61. Poorooshasb, H. B., Holubec, I. and Sherbourne, A. N. (1967): “Yielding and flow of sand in triaxial compression: Parts II and III”, Canadian Geotechnical Journal, Vol.IV,No.4, pp.376–397.

    Article  Google Scholar 

  62. Poorooshasb, H.B. (1971): “Deformation of sand in triaxial compression”, Proc., 4th Asian Regional Conf. on SMFE, Bangkok, Vol.1. pp.63–66.

    Google Scholar 

  63. Rendulic, L. (1936): “Relation between void ratio and effective principal stresses for a remouldedsilty clay”, Proc. 1st International Conference on Soil Mechanics, Vol.3, pp.48–51.

    Google Scholar 

  64. Schanz, T., Vermeer, P. A. and Bonnier, P. G. (1999): “The hardening soil model: Formulation and verificationrd, Beyond 2000 in Computational Geotechnics (Brinkgreve eds.), Balkema, pp.281–296.

    Google Scholar 

  65. Schofield, A. N. and Wroth, C. P. (1968): “Critical State Soil Mechanics”, McGraw Hill.

    Google Scholar 

  66. Shibuya, S., Mitachi, T., Tanaka, H., Kawaguchi, T. and Lee, I.-M. (2001): “Measurement and application of quasi-elastic properties in geotechnical site characterization”, Keynote Lecture, Prof. 11th Asian Regional Conference on SMGE, Seoul (Hong et al., eds.), Vol. 2, pp.639–710.

    Google Scholar 

  67. Siddiquee, M. S. A., Tatsuoka, F. and Tanaka, T. (2006), “FEM simulation of the viscous effects on the stress-strain behaviour of sand in plane strain compression”, Soils and Foundations, Vol.46,No. 1, pp.99–108.

    Article  Google Scholar 

  68. Sorensen, Kenny K., Baudet, Beatrice A. and Tatsuoka, F. (2006): “Coupling of ageing and viscous effects in an artificially structured clay”, Soil Stress-Strain Behavior: Measurement, Modeling and Analysis, Proc. of Geotechnical Symposium in Roma, March 16 & 17, 2006 (Ling et al., eds.).

    Google Scholar 

  69. Stroud, M. A. (1971): “The behaviour of sand at low stress levels in the simple shear apparatus”, Ph.D Dissertation, University of Cambridge.

    Google Scholar 

  70. Sugai, M., Tatsuoka, F., Kuwabara, M. and Sugo, K. (2000): “Strength and deformation characteristics of cement-Mixed soft clay”, Coastal Geotechnical Engineering in Practice, Proc. IS Yokohama (Nakase & Tsuchida eds.), Balkema, Vol.1, pp. 521–52.

    Google Scholar 

  71. Sugai, M. and Tatsuoka, F. (2003): “Ageing and loading rate effects on the stress-strain behaviour of a cement-mixed soft clay”, Proc. 3rd Int. Sym. on Deformation Characteristics of Geomaterials, IS Lyon 03 (Di Benedetto et al. eds.), Balkema, September, 2003, pp.627–635.

    Google Scholar 

  72. Suklje, L. (1969): “Rheological aspects of soil mechanics”, Wiley-Interscience, London.

    Google Scholar 

  73. Tanaka, H. (2005a): “Consolidation behaviour of natural soils around pc value — Long-term consolidation test”, Soils and Foundations, Vol.45,No 3, pp.83–96.

    Google Scholar 

  74. Tanaka, H. (2005b): “Consolidation behaviour of natural soils around pc value — Interconnected oedometer test”, Soils and Foundations, Vol.45,No 3, pp.97–106.

    Google Scholar 

  75. Tatsuoka, F. (1973): “Fundamental study on the deformation characteristics of sand by triaxial tests”, Dr of Engineering thesis, University of Tokyo (in Japanese).

    Google Scholar 

  76. Tatsuoka, F. and Ishihara, K. (1974): “Yielding of sand in triaxial compression”, Soils and Foundations, 14(2), 51–65.

    Article  Google Scholar 

  77. Tatsuoka, F. (1980): “Stress-strain behaviour of an idealized anisotropic granular material”, Soils and Foundations, Vo.20,No. 3, pp.75–90.

    Article  Google Scholar 

  78. Tatsuoka, F., and Molenkamp, F. (1983): “Discussion on yield loci for sands”, Mechanics of Granular Materials: New Models and Constitutive Relations, Elsevier Science Publisher B.V., pp.75–87.

    Google Scholar 

  79. Tatsuoka, F. and Shibuya, S. (1991): “Deformation characteristics of soils and rocks from field and laboratory tests”, Keynote Lecture for Session No. 1, Proc. of the 9th Asian Regional Conf. on SMFE, Bangkok, Vol.II, pp.101–170.

    Google Scholar 

  80. Tatsuoka, F. and Kohata, Y. (1995): “Stiffness of hard soils and soft rocks in engineering applications”, Keynote Lecture, Proc. of Int. Symposium Pre-Failure Deformation of Geomaterials (Shibuya et al., eds.), Balkema, Vol. 2, pp.947–1063.

    Google Scholar 

  81. Tatsuoka, F., Lo Presti, D. C. F. and Kohata, Y. (1995): “Deformation characteristics of soils and soft rocks under monotonic and cyclic loads and their relationships”, SOA Report, Proc. of the Third Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St Louis (Prakash eds.), Vol.2, pp.851–879.

    Google Scholar 

  82. Tatsuoka, F., Jardine, R. J., Lo Presti, D. C. F., Di Benedetto, H. and Kodaka, T. (1999a): “Characterising the Pre-Failure Deformation Properties of Geomaterials”, Theme Lecture for the Plenary Session No. 1, Proc. of XIV IC on SMFE, Hamburg, September 1997, Volume 4, pp.2129–2164.

    Google Scholar 

  83. Tatsuoka, F., Modoni, G., Jiang, G.-L., Anh Dan, L. Q., Flora, A., Matsushita, M., and Koseki, J. (1999b): “Stress-Strain Behaviour at Small Strains of Unbound Granular Materials and its Laboratory Tests, Keynote Lecture”, Proc. of Workshop on Modelling and Advanced testing for Unbound Granular Materials, January 21 and 22, 1999, Lisboa (Correia eds.), Balkema, pp.17–61.

    Google Scholar 

  84. Tatsuoka, F., Santucci de Magistris, F. and Momoya, M. and Maruyama, N. (1999c): “Isotach behaviour of geomaterials and its modelling”, Proc. Second Int. Conf. on Pre-Failure Deformation Characteristics of Geomaterials, IS Torino 99 (Jamiolkowski et al., eds.), Balkema, Vol.1, pp.491–499.

    Google Scholar 

  85. Tatsuoka, F., Santucci de Magistris, F., Hayano, K., Momoya, Y. and Koseki, J. (2000): “Some new aspects of time effects on the stress-strain behaviour of stiff geomaterials”, Keynote Lecture, The Geotechnics of Hard Soils-Soft Rocks, Proc. of Second Int. Conf. on Hard Soils and Soft Rocks, Napoli, 1998 (Evamgelista and Picarelli eds.), Balkema, Vol.2, pp.1285–1371.

    Google Scholar 

  86. Tatsuoka, F., Uchimura, T., Hayano, K., Di Benedetto, H., Koseki, J. and Siddiquee, M. S. A. (2001): “Time-dependent deformation characteristics of stiff geomaterials in engineering practice”, the Theme Lecture, Proc. of the Second International Conference on Pre-failure Deformation Characteristics of Geomaterials, Torino, 1999, Balkema (Jamiolkowski et al., eds.), Vol.2, pp.1161–1262.

    Google Scholar 

  87. Tatsuoka, F., Ishihara, M., Di Benedetto, H. and Kuwano, R. (2002): “Time-dependent deformation characteristics of geomaterials and their simulation”, Soils and Foundations, Vol.42,No. 2, pp.103–129.

    Article  Google Scholar 

  88. Tatsuoka, F., Di Benedetto, H. and Nishi, T. (2003a): “A framework for modelling of the time effects on the stress-strain behaviour of geomaterials”, Proc. 3rd Int. Sym. on Deformation Characteristics of Geomaterials, IS Lyon 03 (Di Benedetto et al. eds.), Balkema, September, 2003, pp.1135–1143.

    Google Scholar 

  89. Tatsuoka, F., Acosta-Martinez, H. E. and Li, J.-Z. (2003b): “Viscosity in one-dimensional deformation of clay and its modelling and simulation”, Proc. 38th Japan National Conf. on Geotechnical Eingieering, JGS, Akita.

    Google Scholar 

  90. Tatsuoka, F. Nawir, H., and Kuwano, R. (2004a): “A modelling procedure of shear yielding characteristics affected by viscous properties of sand in triaxial compression”, Soils and Foundations, Vol.44,No. 6, pp.83–99.

    Article  Google Scholar 

  91. Tatsuoka, F. (2004): “Effects of viscous properties and ageing on the stress-strain behaviour of geomaterials.” Geomechanics-Testing, Modeling and Simulation, Proceedings of the GI-JGS workshop, Boston, ASCE Geotechnical Special Publication GSP No. 143 (Yamamuro & Koseki eds.), pp.1–60.

    Google Scholar 

  92. Tatsuoka, F., Hirakawa, D., Shinoda, M., Kongkitkul, W. and Uchimura, T. (2004b): “An old but new issue; viscous properties of polymer geosynthetic reinforcement and geosynthetic-reinforced soil structures,” Keynote lecture, Proc. GeoAsia04, Seoul, pp.29–77.

    Google Scholar 

  93. Tatsuoka, F. and Tani, K. (2006): Fundamental issues in clay consolidation, Monthly Journal Kiso-Ko (the Foundation Engineering and Equipment), Vol.34,No. 396, June, pp. 12–22 (in Japanese).

    Google Scholar 

  94. Tatsuoka, F., Enomoto, T. and Kiyota, T. (2006): “Viscous properties of geomaterials in drained shear”, Geomechanics-Testing, Modeling and Simulation, Proceedings of the Second GI-JGS workshop, Osaka, September 2005, ASCE Geotechnical Special Publication GSP (Lade et al. eds.) (to appear).

    Google Scholar 

  95. Vermeer, P. A. (1978): “A double hardening model for sand”, Gótechnique Vol.28,No.4, pp.413–433.

    Article  Google Scholar 

  96. Vermeer, P. A. and Neher, H. P. (1999): “A soft soil model that accounts for creep”, Beyond 2000 in Computational Geotechnics (Brinkgreve eds.), Balkema, pp. 249–261.

    Google Scholar 

  97. Yamamuro, J. A. and Lade, P. V. (1993): “Effects of strain rate on instability of granular soils”, Geotechnical Testing Journal, Vol.16,No. 3, pp.304–313.

    Article  Google Scholar 

  98. Yasin, S. J. M. and Tatsuoka, F. (2000): “Stress history-dependent deformation haracteristics of dense sand in plane strain”, Soils and Foundations, Vo.40,No. 2, pp.77–98.

    Article  Google Scholar 

  99. Yasin, S. J. M. and Tatsuoka, F. (2003): “New strain energy hardening functions for sand based on the double yielding concept”, Proc. 3rd Int. Symp. on Deformation Characteristics of Geomaterials, IS Lyon 03 (Di Benedetto et al. eds.), Balkema, Sept. 2003, pp.1127–1134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Tatsuoka, F. (2007). Inelastic Deformation Characteristics of Geomaterial. In: Ling, H.I., Callisto, L., Leshchinsky, D., Koseki, J. (eds) Soil Stress-Strain Behavior: Measurement, Modeling and Analysis. Solid Mechanics and Its Applications, vol 146. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6146-2_1

Download citation

Publish with us

Policies and ethics