Skip to main content

Measuring Methane Emission of Ruminants by In Vitro and In Vivo Techniques

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AFRC 1993. Energy and protein requirements of ruminants. CAB International, Wallingford, UK

    Google Scholar 

  2. AOAC, Association of official analytical chemists (1980) Official methods of analysis. 14th ed. Association of Official Analytical Chemists, Washington DC. 1141 pp

    Google Scholar 

  3. Brouwer, E. 1965. Report of sub-committee on constants and factors, p. 441–443. In K.L. Blaxter, (ed.), Energy metabolism, Academic Press, London, UK

    Google Scholar 

  4. Carro, M.D., P. Lebzien, and K. Rohr. 1995. Effect of pore size of nylon bags and dilution rate on fermentation parameters in a semi-continuous artificial rumen. Small Ruminant Res. 15:113–119

    Article  Google Scholar 

  5. Czerkawski, J.W., and G. Breckenridge. 1977. Design and development of a long-term rumen simulation technique (Rusitec). Br. J. Nutr. 38:371–384

    Article  CAS  Google Scholar 

  6. Demeyer, D.I. 1991. Quantitative aspects of microbial metabolism in the rumen and hindgut, p. 217–237. In J.P. Jouany, (ed.), Rumen Microbial Metabolism and Ruminant Digestion, INRA Editions, Paris, France

    Google Scholar 

  7. Johnson, D.E., K.A. Johnson, G.M. Ward, and M.E. Branine. 2000. Ruminants and other animals, p. 112–133. In M. A.K. Khalil (ed.), Atmospheric methane: Its role in the global environment. Springer Verlag, Berlin, Germany

    Google Scholar 

  8. Johnson, K.A. and D.E. Johnson. 1995. Methane emission from cattle. J. Anim. Sci. 73:2483–2492

    CAS  Google Scholar 

  9. Khalil, M.A.K. 2000. Atmospheric methane: an introduction, p.1–8. In M.A.K. Khalil (ed.), Atmospheric methane: Its role in the global environment. Springer Verlag, Berlin, Germany

    Google Scholar 

  10. Machmüller, A., D.A. Ossowski, M. Wanner, and M. Kreuzer. 1998. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (Rusitec). Anim. Feed Sci. Technol. 71:117–130

    Article  Google Scholar 

  11. Machmüller, A., C.R. Soliva, and M. Kreuzer. 2002. In vitro ruminal methane suppression by lauric acid as influenced by dietary calcium. Can. J. Anim. Sci. 82:233–239

    Google Scholar 

  12. McDougall, E.I. 1948. Studies on ruminant saliva 1. The composition and output of sheep’s saliva. Biochem. J. 43:99–109

    CAS  Google Scholar 

  13. Menke, K.H., L. Raab, A. Salewski, H. Steingass, D. Fritz, and W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding-stuff from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 93:217–222

    Article  CAS  Google Scholar 

  14. Menke, K.H., and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Develop. 28:7–55

    Google Scholar 

  15. Moss, A.R., and D.I. Givens. 1993. Effect of supplement type and grass silage:concentrate ratio on methane production by sheep. Proc. Br. Soc. Anim. Prod. Paper No. 52

    Google Scholar 

  16. Naumann, C., and R. Bassler. 1997. VDLUFA-Methodenbuch Band III, Die chemische Untersuchung von Futtermitteln. 3rd ed., VDLUFA-Verlag, Darmstadt, Germany

    Google Scholar 

  17. Owens, A.J., J.M. Steed, D.L. Filkin, C. Miller, and J.P. Jesson. 1982. The potential effects of increased methane on atmospheric ozone. Geophys. Res. Lett. 9:1105–1108

    CAS  Google Scholar 

  18. Soliva, C.R., I.K. Hindrichsen, L. Meile, M. Kreuzer, and A. Machmüller. 2003. Effects of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Lett. Appl. Microbiol. 37:35–39

    Article  CAS  Google Scholar 

  19. Sutter, F. 1993. Einfluss einer reduzierten Proteinversorgung auf den Protein- und Energieumsatz von Milchkühen bei Laktationsbeginn. Diss. Nr. 10101, ETH Zürich

    Google Scholar 

  20. Tangerman, A., and F.M. Nagengast. 1996. A gas chromatographic analysis of fecal short-chain fatty acids, using the direct injection method. Anal. Biochem. 236:1–8

    Article  CAS  Google Scholar 

  21. Thomson, E.F. 1996. Description of simplified open-circuit respiration equipment for cattle. Laboratory Practive, 1315–1317

    Google Scholar 

  22. Thomson, E.F. 1979. Energy metabolism of sheep and cattle during compensatory growth. Diss. Nr. 6382, ETH Zürich

    Google Scholar 

  23. Wuebbles, D.J., and K. Hayhoe. 2002. Atmospheric methane and global change. Earth-Sci. Rev. 57:117–210

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 IAEA

About this chapter

Cite this chapter

Soliva, C., Hess, H. (2007). Measuring Methane Emission of Ruminants by In Vitro and In Vivo Techniques. In: Makkar, H.P., Vercoe, P.E. (eds) Measuring Methane Production From Ruminants. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6133-2_2

Download citation

Publish with us

Policies and ethics