Advertisement

Robust time domain channel estimation for MIMO-OFDMA Downlink System

  • B. Le Saux
  • M. Hélard
  • R. Legouable
Part of the Lecture Notes Electrical Engineering book series (LNEE, volume 1)

Abstract

This paper investigates a new time domain channel estimation for MIMO OFDMA downlink systems. Compared to classical frequency domain channel estimation, time approach allows improvements in a multi-antenna system. Nevertheless, the presence of null carriers in the spectrum leads to performance degradation because of ”border effect” phenomenon. An improved time domain channel estimation for MIMO-OFDMA system is proposed for downlink transmission and compared to classical channel estimation methods. Besides, this channel estimation process can be applied in any SISO and/or MIMO multicarrier transmission.

Keywords

Channel Estimation Training Sequence Orthogonal Frequency Division Multiple Access Pilot Symbol OFDM Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    X.G. Doukopoulos and R. Legouable. Robust channel estimation via fft interpolation for multicarrier systems. submitted to IEEE Vehicular Technology Conference, May 2007.Google Scholar
  2. [2]
    I. Tolochko and M. Faulkner. Real time lmmse channel estimation for wireless ofdm systems with transmitter diversity. volume 3, pages 1555–1559. IEEE Vehicular Technology Conference, Sept. 2002.Google Scholar
  3. [3]
    I. Barhumi, G. Leus, and M. Moonen. Optimal training design for mimo ofdm systems in mobile wireless channels. IEEE Transactions on Signal Processing, 51, no. 6, Juin 2003.Google Scholar
  4. [4]
    M. Morelli and U. Mengali. A comparison of pilot-aided channel estimation methods for ofdm systems. IEEE Transactions on Signal Processing, 49(12):3065–3073, Jan. 2001.CrossRefGoogle Scholar
  5. [5]
    W. Hachem, D. Kténas, J. Barletta, R. Legouable, N. Chapalain, L. Brunel, and A. Garot. Définition des fonctionnalités de base des couches phy/mac du démonstrateur. Technical report, RNRT OPUS, 2006.Google Scholar
  6. [6]
    T.-J. Liang and G. Fettweis. Mimo preamble design with a subset of subcarriers in ofdm-based wlan. volume 2, pages 1032–1036. IEEE Vehicular Technology Conference, Jun. 2005.Google Scholar
  7. [7]
    Z. Li, Y. Gai, and Y. Xu. Optimal training signals design for mimo ofdm systems with guard subcarriers. IEEE Vehicular Technology, 2006.Google Scholar
  8. [8]
    E.G. Larsson and J. Li. Preamble design for multiple-antenna ofdm-based wlans with null subcarriers. IEEE Signal Processing Letters, 8:285–288, Nov. 2001.CrossRefGoogle Scholar
  9. [9]
    D. S. Baum, J. Hansen, G. Del Galdo, M. Milojevic, J. Salo, and P. Kyösti. An interim channel model for beyond-3g systems: extending the 3gpp spatial channel model (scm). volume 5, pages 3132–3136. IEEE Vehicular Technology Conference, May 2005.Google Scholar
  10. [10]
    S. Baro, G. Bauch, A. Pavlic, and A. Semmler. Improving blast performance using space-time block codes and turbo-decoding. pages 1067–1071. IEEE GLOBECOM, Nov. 1998.Google Scholar
  11. [11]
    3GPP TSG-RAN. 3gpp tr 25.814, physical layer aspects for evolued utra (release 7). Technical report, 2006.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • B. Le Saux
    • 1
  • M. Hélard
    • 1
  • R. Legouable
    • 1
  1. 1.France Telecom R&D DivisionBroadband Radio Access laboratoryCesson-SévignéFrance

Personalised recommendations