Skip to main content

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 9))

Abstract

We exploit the analogy between the well ordering principle for nonempty subsets of N (the set of natural numbers) and the existence of a greatest lower bound for non-empty subsets of [a,b)1 to formulate a principle of induction over the continuum for [a,b) analogous to induction over N. While the gist of the idea for this principle has been alluded to, our formulation seems novel. To demonstrate the efficiency of the approach, we use the new induction form to give a proof of the compactness of [a,b]. (Compactness, which plays a key role in topology, will be briefly discussed.) Although the proof is not fundamentally different from many familiar ones, it is direct and transparent. We also give other applications of the new principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borel, E. (1895). “Sur Quelques Points de la Théorie des Fonctions”, Annales Scientifiques de l’École Normale Supérieure, Paris, 3, 1–55.

    Google Scholar 

  2. Bruckner, A.M., Bruckner, J.B. and Thomson, B.S. (1997). Real Analysis, Upper Saddle River (New Jersey): Prentice-Hall.

    Google Scholar 

  3. Cousin, P. (1895). “Sur les Fonctions de n-Variables Complexes”, Acta Mathematica 19, 1–61.

    Article  Google Scholar 

  4. Duren, Jr., W.L. (1957). “Mathematical Induction in Sets”, American Mathematical Monthly 64, 19–22.

    Article  Google Scholar 

  5. Ford, L.R. (1957). “Interval-Additive Propositions”, American Mathematical Monthly 64, 106–108.

    Article  Google Scholar 

  6. Frèchet, M. (1906). “Sur Quelques Point du Calcul Fonctionnel”, Rendiconti di Palermo 22, 1–74.

    Google Scholar 

  7. Heine E. (1872). “Die Elemente der Funktionenlehre”, Crelles Journal 74, 172–188.

    Google Scholar 

  8. Lebesgue, H. (1904). Leçons sur l’Intégration, Paris: Gauthier-Villars.

    Google Scholar 

  9. Lindelöf, E.L. (1903). “Sur Quelques Points de la Théorie des Ensembles”, Comptes Rendus Hebdomadaire des Seances de l’Academie des Sciences, Paris, 137, 697–700.

    Google Scholar 

  10. Moss, R.M.F. and Roberts, G.T. (1968). “A Creeping Lemma”, American M athematical Monthly 75, 649–652.

    Article  Google Scholar 

  11. Royden, H.L. (1968). Real Analysis, New York: MacMillan.

    Google Scholar 

  12. Shanahan, P. (1972). “A Unified Proof of Several Basic Theorems of Real Analysis”, American Mathematical Monthly 79, 895–898.

    Article  Google Scholar 

  13. Shanahan, P. (1974). “Addendum to ‘A Unified Proof of Several Basic Theorems of Real Analysis’” , American Mathematical Monthly 81, 890–891.

    Google Scholar 

  14. Veblen, O. (1904). “The Heine-Borel Theorem”, Bulletin of the American Mathematical Society 10, 436–439.

    Article  Google Scholar 

  15. Veblen, O. (1905). “Definitions in Terms of Order Alone in the Linear Continuum and in Well-Ordered Sets”, Transactions of the American Mathematical Society 6, 165–171.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Kalantari, I. (2007). Induction over the Continuum. In: Friend, M., Goethe, N.B., Harizanov, V.S. (eds) Induction, Algorithmic Learning Theory, and Philosophy. Logic, Epistemology, and the Unity of Science, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6127-1_5

Download citation

Publish with us

Policies and ethics