Advertisement

Gamma ray signatures of ultra high energy cosmic ray accelerators: electromagnetic cascade versus synchrotron radiation of secondary electrons

Conference paper

Abstract

We discuss the possibility of observing ultra high energy cosmic ray sources in high energy gamma rays. Protons propagating away from their accelerators produce secondary electrons during interactions with cosmic microwave background photons. These electrons start an electromagnetic cascade that results in a broad band gamma ray emission. We show that in a magnetized Universe (B≳10−12 G) such emission is likely to be too extended to be detected above the diffuse background. A more promising possibility comes from the detection of synchrotron photons from the extremely energetic secondary electrons. Although this emission is produced in a rather extended region of size ∼10 Mpc, it is expected to be point-like and detectable at GeV energies if the intergalactic magnetic field is at the nanogauss level.

Keywords

Radiation mechanisms: non-thermal cosmic rays ISM: magnetic fields Gamma rays: theory 

PACS

98.70.Sa 98.70.Rz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Aharonian et al., 1994]
    Aharonian, F.A., et al.: Astrophys J. 423, L5 (1994) ADSCrossRefGoogle Scholar
  2. [Aharonian et al., 2004]
    Aharonian, F., et al.: Nature 432, 75 (2004) ADSCrossRefGoogle Scholar
  3. [Aharonian, 2001]
    Aharonian, F.A.: In: ICRC Conference Proceedings, vol. 27, p. 250 (2001) Google Scholar
  4. [Armengaud et al., 2006]
    Armengaud, E., et al.: Phys. Rev. D 73, 083008 (2006) ADSCrossRefGoogle Scholar
  5. [Berezinskii and Grigoreva, 1988]
    Berezinskii, V.S., Grigoreva, S.I.: Astron. Astrophys. 199, 1 (1988) ADSGoogle Scholar
  6. [Clark et al., 1970]
    Clark, T.A., et al.: Nature 228, 847 (1970) ADSCrossRefGoogle Scholar
  7. [De Marco et al., 2003]
    De Marco, D., et al.: Astropart. Phys. 20, 53 (2003) ADSCrossRefGoogle Scholar
  8. [Ferrigno et al., 2005]
    Ferrigno, C., et al.: Astropart. Phys. 23, 211 (2005) ADSCrossRefGoogle Scholar
  9. [Gabici and Aharonian, 2005]
    Gabici, S., Aharonian, F.A.: Phys. Rev. Lett. 95, 251102 (2005) ADSCrossRefGoogle Scholar
  10. [Gould and Rephaeli, 1978]
    Gould, R.J., Rephaeli, Y.: Astrophys. J. 225, 318 (1978) ADSCrossRefGoogle Scholar
  11. [Greisen, 1966]
    Greisen, K.: Phys. Rev. Lett. 16, 748 (1966) ADSCrossRefGoogle Scholar
  12. [Olinto, 2000]
    Olinto, A.: Phys. Rep. 333, 329 (2000) ADSCrossRefGoogle Scholar
  13. [Primack et al., 2001]
    Primack, J.R., et al.: AIP Conf. Proc. 558, 463 (2001) ADSCrossRefGoogle Scholar
  14. [Rawlings and Saunders, 1991]
    Rawlings, S., Saunders, R.: Nature 349, 138 (1991) ADSCrossRefGoogle Scholar
  15. [Vallée, 2004]
    Vallée, J.P.: New Astron. Rev. 48, 763 (2004) ADSCrossRefGoogle Scholar
  16. [Waxman and Miralda-Escudé, 1996]
    Waxman, E., Miralda-Escudé, J.: Astrophys. J. 462, 59 (1996) Google Scholar
  17. [Zatsepin and Kuzmin, 1966]
    Zatsepin, G.T., Kuzmin, V.A.: JETP Lett. 4, 78 (1966) ADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations