Advertisement

Gamma rays from halos around stars and the Sun

  • E. Orlando
  • A. W. Strong
Conference paper

Abstract

Inverse Compton (IC) scattering by relativistic electrons produces a major component of the diffuse emission from the Galaxy. The photon fields involved are the cosmic microwave background and the interstellar radiation field (ISRF) from stars and dust. Calculations of the inverse Compton distribution have usually assumed a smooth ISRF, but in fact a large part of the Galactic luminosity comes from the most luminous stars, which are rare. Therefore we expect the ISRF, and hence the inverse Compton emission, to be clumpy at some level, which could be detectable by instruments such as GLAST. Even individual nearby luminous stars could be detectable assuming just the normal cosmic-ray electron spectrum. We present the basic formalism required and give possible candidate stars to be detected and make predictions for GLAST. Then we apply the formalism to the OB associations and the Sun, showing that the IC emission produced is not negligible compared to the sensitivity of current or coming detectors. We estimate that the gamma-ray flux from the halo around the Sun contributes to the diffuse background emission at the few percent level.

Keywords

Gamma rays Cosmic rays Stars Sun 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Alcaraz et al., 2000]
    Alcaraz, J., et al.: Phys. Lett. B 484, 10 (2000) ADSCrossRefGoogle Scholar
  2. [Boezio et al., 2000]
    Boezio, M., et al.: Astrophys. J. 532, 653 (2000) ADSCrossRefGoogle Scholar
  3. [Chen and White, 1991]
    Chen, W., White, R.L.: Astrophys. J. 381, L63 (1991) ADSCrossRefGoogle Scholar
  4. [Davidson and Humphreys, 1997]
    Davidson, K., Humphreys, R.M.: Annu. Rev. Astron. Astrophys. 35, 1 (1997) ADSCrossRefGoogle Scholar
  5. [DuVernois, 2001]
    DuVernois, M.A.: Astrophys. J. 559, 296 (2001) ADSCrossRefGoogle Scholar
  6. [GLAST, 0000]
  7. [Grimani et al., 2002]
    Grimani, C., et al.: Astron. Astrophys. 392, 287 (2002) ADSCrossRefGoogle Scholar
  8. [Knödlseder, 2000]
    Knödlseder, J.: Astron. Astrophys. 360, 539 (2000) ADSGoogle Scholar
  9. [Kobayashi, 1999]
    Kobayashi, T.: In: Proceedings 26th ICRC (1999) Google Scholar
  10. [Lamers and Leitherer, 1993]
    Lamers, H.J.G.L.M., Leitherer, C.: Astrophys. J. 412, 771 (1993) ADSCrossRefGoogle Scholar
  11. [Moskalenko et al., 2006]
    Moskalenko, I.V., et al.: Astrophys. J. Lett. 652, L65 (2006) ADSCrossRefGoogle Scholar
  12. [Reimer, 2007]
    Reimer, A.: Astrophys. Space Sci., doi:  10.1007/s10509-007-9462-3 (2007)
  13. [Strong et al., 2004a]
    Strong, A.W., et al.: Astrophys. J. 613, 962 (2004a) ADSCrossRefGoogle Scholar
  14. [Strong et al., 2004b]
    Strong, A.W., et al.: Astrophys. J. 613, 956 (2004b) ADSCrossRefGoogle Scholar
  15. [The Hipparcos and Tycho Catalogues, 1997]
    The Hipparcos and Tycho Catalogues. ESA SP 1200; http://www.rssd.esa.int/Hipparcos/catalog.html (1997)
  16. [Torres, 2007]
    Torres, D.F.: Astrophys. Space Sci., doi:  10.1007/s10509-007-9475-y (2007)
  17. [Torres et al., 2004]
    Torres, D.F., et al.: Astrophys. J. 601, L75 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.MPEGarchingGermany

Personalised recommendations