Skip to main content

Single and Multi-UAV Relative Position Estimation Based on Natural Landmarks

  • Chapter
Advances in Unmanned Aerial Vehicles

Abstract

The localization problem is usually solved in aerial robotics by means of GPS, Inertial Measurement Units (IMUs) and compass sensors, which are fused to provide UAV position estimation in a global frame. However, GPS estimates are often subject to inaccuracies and errors related to GPS failure or degradation. Also, GPS cannot be directly used for relative positioning of a UAV with respect to other objects, as for example for landing on mobile platforms or for wall following in building inspection.

This Chapter is the outgrowth of the authors’ paper “Multi-UAV Localization Based on Blob Features for Exploration Missions”, published in the IEEE Robotics and Automation Magazine, Vol. 13, No. 3, September 2006. This research has been conducted under the framework of the project COMETS: “Real-time coordination and control of multiple heterogeneous unmanned aerial vehicles”, IST-2001-34304, funded by the 1ST Programme of the European Commission. Cooperation of all partners and particularly the teams of the Technical University of Berlin (TUB), the Laboratoire d’Architecture et d’Analyse des Systèmes (LAAS) and Helivision is acknowledged. The work of the Spanish team has also been also funded by projects AWARE (European Commission IST-2006-3379) and AEROSENS (Spanish National R&D Program DPI2005-02293).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amidi O., Kanade T., and Fujita K., “Visual Odometer for Autonomous Helicopter Flight”, Journal of Robotics and Autonomous Systems, 28:185–193, August 1999.

    Google Scholar 

  2. Ayache N., Artificial Vision for Mobile Robots, MIT Press.

    Google Scholar 

  3. Caballero F., Merino L., Ferruz J., and Ollero A., “Improving Vision-Based Planar Motion Estimation for Unmanned Aerial Vehicles Through Online Mosaicking”, Proceedings, International Conference on Robotics and Automation, 2860–2865, Orlando, Florida, May 2006.

    Google Scholar 

  4. Corke P. I., Sikka P., and Roberts J. M., “Height Estimation for an Autonomous Helicopter”, Proceedings, ISER, 101–110, 2000.

    Google Scholar 

  5. Dickmanns E.D. and Schell F. R., “Autonomous Landing of Airplanes Using Dynamic Machine Vision ”, Proceedings, IEEE Workshop on Applications of Computer Vision, 172–179, 1992.

    Google Scholar 

  6. Drew M. S., Wei J., and Li Z.-N., “On Illumination Invariance in Color Object Recognition”, Pattern Recognition, 31(8):1077–1087, 1998.

    Article  Google Scholar 

  7. Faugeras O., and Luong Q-T., The Geometry of Multiple Images: The Laws that Govern the Formation of Multiple Images of a Scene and Some of Their Applications, MIT Press, 2001.

    Google Scholar 

  8. Ferruz J., and Ollero A., “Real-Time Feature Matching in Image Sequences for Non-Structured Environments: Applications to Vehicle Guidance”, Journal of Intelligent and Robotic Systems, Vol. 28, Issue 1/2, pp. 85–123, June 2000.

    Article  Google Scholar 

  9. Finlayson G. D., Drew M. S., and Funt B. V., “Color Constancy: Generalized Diagonal Transforms Suffice”, Journal of the Optical Society of America, A, ll(ll):3011–3019, 1994.

    Google Scholar 

  10. Fischler M. A., and Bolles R. C, “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography”, Communications of the ACM, 24:381–395, 1981.

    Article  MathSciNet  Google Scholar 

  11. Forssén P.-E., and Moe A., “View Matching with Blob Features”, Proceedings, 2 nd Canadian Conference on Robot Vision, 228–235, Victoria, BC, Canada, May 2005.

    Google Scholar 

  12. Forssén P.E., Low and Medium Level Vision Using Channel Representations, PhD Thesis No. 858, Linkhöping University, 2004.

    Google Scholar 

  13. Garcia-Pardo P. J., Sukhatme G. S., and Montgomery J. F., “Towards VisionBased Safe Landing for an Autonomous Helicopter”, Robotics and Autonomous Systems, 38(1): 19–29, 2001.

    Article  Google Scholar 

  14. Hartley R. I., and Zisserman A., Multiple View Geometry in Computer Vision, Cambridge University Press, 2 nd Edition, 2004.

    Google Scholar 

  15. Hsu S., Sawhney H. S., and Kumar R., “Automated Mosaics via Topology Inference”, IEEE Computation and Graphics Applications, 22(2):44–54, 2002.

    Article  Google Scholar 

  16. Hygounenc E., Jung I-K., Soueres P., and Lacroix S., “The Autonomous Blimp Project of LAAS-CNRS: Achievements in Flight Control and Terrain Mapping”, The International Journal of Robotics Research, 23(4–5):473–511, 2004.

    Article  Google Scholar 

  17. Kim J., and Sukkarieh S., “Autonomous Airborne Navigation in Unknown Terrain Environments”, IEEE Transactions on Aerospace and Electronic Systems, 40(3):1031–1045, July 2004.

    Google Scholar 

  18. Konolige K., Fox D., Limketkai B., Ko J., and Stewart B., “Map Merging for Distributed Robot Navigation”, Proceedings, IEEE/RSJ International Conference on Intelligent Robots and Systems, 212–217, 2003.

    Google Scholar 

  19. Lindeberg T., Scale-Space Theory in Computer Vision, Kluwer, 1994.

    Google Scholar 

  20. Mallet A., Lacroix S., and Gallo L., “Position Estimation in Outdoor Environments Using Pixel Tracking and Stereo Vision”, Proceedings, IEEE International Conference on Robotics and Automation, 3519_3524, 2000.

    Google Scholar 

  21. Mejias L., Saripalli S., Campoy P., and Sukhatme G. S., “Visual Servoing of an Autonomous Helicopter in Urban Areas Using Feature Tracking”, Journal of Field Robotics, 23(3–4):185–199, 2006.

    Article  Google Scholar 

  22. Merino L., Caballero F., Martinez de Dios J.R., Ferruz J., and Ollero A., “A Cooperative Perception System for Multiple UAVs: Application to Automatic Detection of Forest Fires”, Journal of Field Robotics, 23(3–4):165–184, 2006.

    Article  Google Scholar 

  23. Obdrzálek S., and Matas J., “Object Recognition Using Local Affine Frames on Distinguished Regions”, Proceedings, 13th BMVC, 113–122, September 2002.

    Google Scholar 

  24. Ollero A., Ferruz J., Caballero F., Hurtado S., and Merino L., “Motion Compensation and Object Detection for Autonomous Helicopter Visual Navigation in the COMETS System”, Proceedings, IEEE International Conference on Robotics and Automation, 19–24, 2004.

    Google Scholar 

  25. Ollero A., Lacroix S., Merino L., Gancet J., Wiklund J., Remuss V., Veiga I., Gutierrez L. G., Viegas D. X., Gonzalez M. A., Mallet A., Aland R., Chatila R., Hommel G., Colmenero F. J., Arrue B., Ferruz J., Martinez J. R., and Caballero F., “Multiple Eyes in the Sky: Architecture and Perception Issues in the COMETS Unmanned Air Vehicles Project”, IEEE Robotics and Automation Magazine, 12(2):46–57, June 2005.

    Google Scholar 

  26. Ollero A., and Merino L., “Control and Perception Techniques for Aerial Robotics”, Annual Reviews in Control, 28:167–178, 2004.

    Article  Google Scholar 

  27. Pizarro O. and Singh H., “Toward Large-Area Mosaicing for Underwater Scientific Applications”, IEEE Journal of Oceanic Engineering, 28(4):651–672, October 2003.

    Google Scholar 

  28. Proctor A. A., Johnson E. N., and Apker T. B., “Vision-Only Control and Guidance for Aircraft”, Journal of Field Robotics, 23(10):863–890, 2006.

    Article  Google Scholar 

  29. Remuss V., Musial M., and Hommel G., “Marvin An Autonomous Flying Robot-Bases on Mass Market”, Proceedings of the Workshop WS6, Aerial Robotics, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002.

    Google Scholar 

  30. Saripalli S., Montgomery J. F., and Sukhatme G. S., “Visually Guided Landing of an Unmanned Aerial Vehicle”, IEEE Transactions on Robotics and Automation, 19(3):371–380, June 2003.

    Google Scholar 

  31. Saripalli S., Naffin D., and Sukhatme G. S., “Autonomous Flying Vehicle Research at the University of Southern California”, Proceedings, First International Workshop on Multi-Robot Systems, 2002.

    Google Scholar 

  32. Schmitt T., Hanek R., Beetz M., Buck S., and Radig B., “Cooperative Probabilistic State Estimation for Vision-Based Autonomous Mobile Robots”, IEEE Transactions on Robotics and Automation, 18:670–684, October 2002.

    Google Scholar 

  33. Shakernia O., Vidal R., Sharp C, Ma Y., and Sastry S., “Multiple View Motion Estimation and Control for Landing an Aerial Vehicle”, Proceedings, International Conference on Robotics and Automation, 2793–2798, May 2002.

    Google Scholar 

  34. Shum H.-Y., and Szeliski R., “Construction and Refinement of Panoramic Mosaics with Global and Local Alignment”, Proceedings, Sixth International Conference on Computer Vision, Washington, DC, 1998.

    Google Scholar 

  35. Sukkarieh S., Nettleton E., Kim J.-H., Ridley M., Goktogan A., and DurrantWhyte H., “The ANSER Project: Data Fusion across Multiple Uninhabited Air Vehicles”, The International Journal of Robotics Research, 22(7–8):505–539, 2003.

    Article  Google Scholar 

  36. Thrun S., “A Probabilistic Online Mapping Algorithm for Teams of Mobile Robots”, International Journal of Robotics Research, 20(5):335–363, 2001.

    Article  Google Scholar 

  37. Tomasi C, Shape and Motion from Image Streams: A Factorization Method, PhD Thesis, Carnegie Mellon University.

    Google Scholar 

  38. Tran L. V., Efficient Image Retrieval with Statistical Color Descriptors, PhD Thesis No. 810, Linköping University, 2003.

    Google Scholar 

  39. Triggs B., “Autocalibration from Planar Scenes”, Proceedings, 5 th European Conference on Computer Vision, 89–105, London, UK, 1998.

    Google Scholar 

  40. Tsai R. Y., Huang T. S., and Zhu W.-L., “Estimating Three-Dimensional Motion Parameters of a Rigid Planar Patch, ii: Singular Value Decomposition”, IEEE Transactions Acoustic, Speech and Signal Processing, 30(8):525–624, August 1982.

    Google Scholar 

  41. Tuytelaars T., and Gool L. V., “Matching Widely Separated Views Based on Affinely Invariant Regions”, International Journal of Computer Vision, 59:61–85, 2004.

    Article  Google Scholar 

  42. Vidal R., Sastry S., Kim J., Shakernia O., and Shim D., “The Berkeley Aerial Robot Project (BEAR)”, Proceedings, IEEE/RSJ International Conference on Intelligent Robots and Systems, 1–10, 2002.

    Google Scholar 

  43. Yakimenko O. A., Kaminer I. I., Lentz W. J., and Ghyzel P. A., “Unmanned Aircraft Navigation for Shipboard Landing Using Infrared Vision”, IEEE Transactions on Aerospace and Electronic Systems, 38(4): 1181–1200, 2002.

    Article  Google Scholar 

  44. Zhang Z., and Hintz K. J., “Evolving Neural Networks for Video Attitude and Height Sensor”, Proceedings, SPIE International Symposium on Aerospace/Defense Sensing and Control, 2484:383–393, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer. Printed in the Netherlands

About this chapter

Cite this chapter

Merino, L. et al. (2007). Single and Multi-UAV Relative Position Estimation Based on Natural Landmarks. In: Valavanis, K.P. (eds) Advances in Unmanned Aerial Vehicles. Intelligent Systems, Control and Automation: Science and Engineering, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6114-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6114-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6113-4

  • Online ISBN: 978-1-4020-6114-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics