Skip to main content

Phylogenetics, Molecular Biology and Ecological Impacts of a Group of Highly Unusual Protists

The Dinoflagellates

  • Chapter
Algae and Cyanobacteria in Extreme Environments

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 11))

  • 5273 Accesses

Dinoflagellates are well-known and readily recognized protists, consisting of ~4,000 named extant and fossil species (Fensome et al., 1993). Dinoflagellates exhibit great diversity in many ecological parameters such as niche exploitation, and show extreme idiosyncrasy in their ultrastructural and molecular biological characteristics. The human impact of sudden dinoflagellate proliferation, in the form of harmful algal blooms (HABs), as well as the impact of the sudden loss or senescence of dinoflagellates, in the form of coral bleaching, have become an increasing focus of concern in recent years. For these reasons, studies of the molecular evolution, ecology, diversity and physiology of dinoflagellates have increased dramatically, and have revealed ever more interesting features. This review will explore the significance of recent findings in the phylogenetics, evolution, molecular biology and ecology of this intriguing group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachvaroff, T. V., Concepcion, G. T., Rogers, C. R., Herman, E. M., and Delwiche, C. F. (2004). Dinoflagellate expressed sequence tag data indicates massive transfer of chloroplast genes to the nuclear genome. Protist 155: 65-78.

    Article  CAS  PubMed  Google Scholar 

  • Banaszak, A. R., Iglesias-Prieto, R., and Trench, R. K. (1993). Scrippsiella velellae sp. nov. (Peridiniales) and Gloeodinium viscum sp. nov. (Phytodiniales), dinoflagellate symbionts of two hydrozoans (Cnidaria). J. Phycol. 29: 517-528.

    Article  Google Scholar 

  • Barbrook, A. C., and Howe, C. J. (2000). Minicircular plastid DNA in the dinoflagellate Amphidinium operculatum. Mol. Gen. Genet 263: 152-158.

    Article  CAS  PubMed  Google Scholar 

  • Beam, C. A., and Himes, M. (1987). Electrophoretic characterization of members of the Crypthecodinium cohnii (Dinophyceae). J. Protozool. 34: 204-217.

    CAS  Google Scholar 

  • Chesnick, J. M., Kooistra, W. H., Wellbrock, U., and Medlin, L. K. (1997). Ribosomal RNA analysis indicates a benthic pinnate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta). J Eukaryot Microbiol. 44: 314-320.

    Article  CAS  PubMed  Google Scholar 

  • Coats, D. W., Adam, E. J., Gallegos, C. L., and Hedrick, S. (1996). Parasitism of photosynthetic dinoflagellates in a shallow subestuary of Chesapeake Bay, U.S.A. Aquat. Microb. Ecol. 11: 1-9.

    Article  Google Scholar 

  • Daugbjerg, N., Hansen, G., Larsen J., and Moestrup, Ø. (2000). Phylogeny of some of the major gen-era of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39: 302-317.

    Article  Google Scholar 

  • Diaz de la Espina, S., Alverca, E., Cuadrado, A., and Franca, S. (2005). Organisation of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates. Eur. J. Cell Biol. 84: 137-149.

    Google Scholar 

  • Dodge, J. D., and Gruet, C. (1987). Dinoflagellate ultrastructure and complex organelles. In F. J. R. Taylor, (ed.). The biology of dinoflagellates. Blackwell Science. Oxford.

    Google Scholar 

  • Drebes, G. (1984). Life cycle and host specificity of marine parasitic dinoflagellates. Helgol. Meeresunters 37: 603-622.

    Google Scholar 

  • Fast, N., Kissinger J. C., Roos, D. S., and Keeling, P. (2001). Nuclear-encoded, plastid targeted genes suggest a single, common origin for apicomplexan and dinoflagellate plastids. Mol. Biol. Evol. 18: 418-426.

    CAS  PubMed  Google Scholar 

  • Fast, N., Xue, L., Bingham, S., and Keeling, P. (2002). Re-examining alveolate evolution using multi-ple protein molecular phylogenies. J. Eukaryot. Microbiol. 49: 30-37.

    Article  CAS  PubMed  Google Scholar 

  • Fensome, R. A., Taylor F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L. (1993). A classification of living and fossil dinoflagellates. American Museum of Natural History. Sheridan Press, Hanover.

    Google Scholar 

  • Flø Jørgensen, M., Murray, S., and Daugbjerg, N. (2004a). Amphidinium revisited: I Redefinition of Amphidinium (Dinophyceae) based on cladistic and molecular phylogenetic analyses. J. Phycol. 40: 351-365.

    Article  Google Scholar 

  • Franks, P. J. (1997). Models of harmful algal blooms. Limnol. Oceanogr. 42: 1273-1282.

    Google Scholar 

  • Gaines G., and Elbrächter M. (1987). Heterotrophic nutrition. In F. J. R. Taylor, (ed.). The biology of dinoflagellates. Blackwell Scientific Publications, Oxford, pp 224-268.

    Google Scholar 

  • Gunderson, J. H., Elwood, H., Ingold, A., Kindle, K., and Sogin, M. (1987). Phylogenetic relation-ships between chlorophytes, chrysophytes and oomycetes. Proc. Natl. Acad. Sci. U.S.A. 84: 5823-5827.

    Article  CAS  PubMed  Google Scholar 

  • Hackett, J. D., Anderson, D. M., Erdner, D. L., and Bhattacharya, D. (2004). Dinoflagellates: a remarkable evolutionary experiment. Am. J. Bot. 91: 1523-1534.

    Article  CAS  Google Scholar 

  • Hallegraeff, G. M. (1993). A review of harmfulalgal blooms and their apparent global increase. Phycologia 32: 79-99.

    Google Scholar 

  • Hansen, P. J. (1991). Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Mar. Ecol. Prog. Ser. 73: 253-261.

    Article  Google Scholar 

  • Hansen, P. J., and Calado, A. J. (1999). Phagotrophic mechanisms and prey selection in free-living dinoflagellates. J. Eukaryot. Microbiol. 46: 382-389.

    Article  Google Scholar 

  • Harper, J. T., and Keeling, P. J. (2003). Nucleus-encoded, plastid targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromist and alveolate plastids. Mol. Biol. Evol. 20: 1730-1735.

    Article  CAS  PubMed  Google Scholar 

  • Hayhome, B. A., Whitten, D. J., Harkins, K. R., and Pfiester, L. A. (1987). Intraspecific variation in the dinoflagellate Peridinium volzii. J. Phycol. 23: 573-580.

    Article  Google Scholar 

  • Horiguchi, T., and Sukigara, C. (2005). Pyramidodinium atrofuscum gen. et sp. nov. (Dinophyceae), a new marine sand-dwelling coccoid dinoflagellate from tropical waters. Phycol. Res. 53: 247-254.

    Article  Google Scholar 

  • Horiguchi, T., Yoshizawa-Ebata, J., and Nakayama, T. (2000). Halostylodinium arenarium, gen. et sp. nov. (Dinophyceae), a coccoid sand-dwelling dinoflagellate from subtropical Japan. J. Phycol. 36: 960-971.

    Article  Google Scholar 

  • Laatsch, T., Zauner, S., Stoeber-Maier, B., Kowallik, K. V., and Maier, U. G. (2004). Plastid-derived single gene minicircles of the dinoflagellate Ceratium horridum are localised in the nucleus. Mol. Biol. Evol. 21: 1318-1322.

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse, T. (2001). Investigating the biodiversity, ecology and phylogeny of endosymbiotic dinofla-gellates in the genus Symbiodinium using the ITS region. J. Phycol. 37: 866-880.

    Article  CAS  Google Scholar 

  • LaJeunesse, T. C., Lambert, G., Anderson, R. A., Coffroth, M. A., and Galbraith D. W. (2005). Symbiodinium (Pyrrhophyta) genome sizes are smallest among dinoflagellates. J. Phycol. 41: 880-886.

    Article  CAS  Google Scholar 

  • Leander, B. S., and Keeling, P. J. (2004). Early evolutionary history of dinoflagellates and apicom-plexans (Alveolata) inferred from HSP90 and actin phylogenies. J. Phycol. 40: 341-350.

    Article  CAS  Google Scholar 

  • Leaw, C. P., Lim, P. T, Ng, B. K., Cheah, M. Y., Ahmad, A., and Usup, G. (2005). Phylogenetic analy-sis of Alexandrium species and Pyrodinium bahamense (Dinophyceae) based on theca morphol-ogy and nuclear ribosomal gene sequence. Phycologia 44: 550-565.

    Article  Google Scholar 

  • Lehane, L. (2000). Ciguatera update. Med. J. Aust. 172: 176-179.

    CAS  PubMed  Google Scholar 

  • Lenaers, G., Scholin, C., Bhaud, Y., Saint-Hilaire, D., and Herzog, M. (1991). A molecular phylogeny of dinoflagellate protists (Pyrrophyta) inferred from the sequences of 24S rRNA divergent domains D1 and D8. J. Mol. Evol. 32: 53-63.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, C. L., and Coffroth, M. J. (2004). The acquisition of exogenous algal symbionts by an octoco-ral after bleaching. Science 304: 1490-1492.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., and Hastings, J. W. (1998). The structure and organisation of the luciferase gene in the photo-synthetic dinoflagellate Gonyaulax polyedra. Plant. Mol. Biol. 36: 275-284.

    Article  PubMed  Google Scholar 

  • Lin, S. (2006). The smallest dinoflagellate genomeis yet to be found: a comment on LaJeunesse et al. J. Phycol. 42: 746-748.

    Article  Google Scholar 

  • Lindberg, K., Moestrup, Ø., and Daugbjerg, N. (2005). Studies on woloszynskoid dinoflagellates I: Woloszynskia coronata re-examined using light and electron microscopy and partial LSU rDNA sequences, with a description of Tovellia gen. nov. and Jagwigia gen. nov. (Tovelliaceae fam. nov.) Phycologia 44: 416-440.

    Article  Google Scholar 

  • Litaker, R. W., Tester, P. A., Colorni, A., Levy, M. G., and Noga, E. J. (1999). The phylogenetic rela-tionship of Pfiesteria piscicida, cryptoperidiniopsoid sp., Amyloodinium ocellatum and a Pfiesteria-like dinoflagellate to other dinoflagellates and apicomplexans. J. Phycol. 35: 1379-1389.

    Article  Google Scholar 

  • López-García, P., Rodríguez-Valera, F., Pedrós-Alló, C., and Moreira, D. (2001). Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409: 603-607.

    Article  PubMed  Google Scholar 

  • McNally, K., Govind, N. S., Thome, P. E., and Trench, R. K. (1994). Small-subunit ribosomal DNA sequence analyses and a reconstruction of the inferred phylogeny among symbiotic dinoflagel-lates (Pyrrophyta). J. Phycol. 30: 316-329.

    Article  CAS  Google Scholar 

  • Marshall, A. (1996). Calcification in hermatypic and ahermatypic corals. Science 271: 1788-1792.

    Article  Google Scholar 

  • Mitchelmore, C. L., Schwarz, J. A., and Weis, V. M. (2002). Development of symbiosis-specific genes as biomarkers for the early detection of cnidarian-algal symbiosis breakdown. Marine Environmental Research. 54: 345-349.

    Article  CAS  PubMed  Google Scholar 

  • Moestrup, Ø., Hansen, G., Daugbjerg, N., Flaim, G., and D’Andrea, M. (2006). Studies on woloszyn-skioid dinoflagellates II: On Tovellia sanguinea sp. nov., the dinoflagellate responsible for the red-dening of Lake Tovel, N. Italy. Eur. J. Phycol. 41: 47-65.

    Article  Google Scholar 

  • Montresor, M., Sgrosso, S., Procaccini, G., and Kooistra, W. H. C. F. (2003). Intraspecific diversity in Scrippsiella trochoidea (Dinophyceae): evidence for cryptic species. Phycologia 42: 56-70.

    Google Scholar 

  • Moon van der Staay, S. Y., De Wachter, R., and Vaulot, D. (2001). Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409: 607-610.

    Google Scholar 

  • Murray, S., Flø Jørgensen, M., Daugbjerg, N., and Rhodes, L. (2004). Amphidinium revisited. II. Resolving species boundaries in the Amphidinium operculatum species complex (Dinophyceae), including the descriptions of Amphidinium trulla sp nov and Amphidinium gibbosum. comb. nov. J. Phycol. 40: 366-382.

    Article  Google Scholar 

  • Murray, S., Flø Jørgensen, M., Ho, S. Y. W., Patterson, D. J., and Jermiin, L. S. (2005). Improving the analysis of dinoflagellate phylogeny based on rDNA. Protist 156: 269-286.

    Article  CAS  PubMed  Google Scholar 

  • Murray, S., Hoppenrath, M., Preisfeld, A., Larsen, J., Yoshimatsu, S., Toriumi, S., and Patterson, D. J. (2006). Phylogeny of Rhinodinium broomeense gen. et sp. nov., a thecate, marine sanddwelling dinoflagellate. J. Phycol. 42: 934-942.

    Article  CAS  Google Scholar 

  • Okamoto, O. K., Robertson, D. L., Fagan, T. F., Hastings, J. W., and Colepicolo, P. (2001). Different regulatory mechanisms modulate the expression of a dinoflagellate iron-superoxide dismutase. J. Biol. Chem. 276: 19989-19993.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto, O. K., and Hastings, J. W. (2003). Genome wide analysis of redox regulated genes in a dinoflagellate. Gene. 321: 73-81.

    Article  CAS  PubMed  Google Scholar 

  • Patron, N. J., Waller, R. F., and Keeling, P. J. (2006). A tertiary plastid uses genes from two endosym-bionts. J. Mol. Biol. 357: 1373-1382.

    Article  CAS  PubMed  Google Scholar 

  • Ragelis, E. P. (1984). Ciguatera seafood poisoning:overview. In E. P. Ragelis (ed.). Seafood toxins, Washington DC, USA, pp 25-36.

    Chapter  Google Scholar 

  • Rizzo, P. J. (1987). Biochemistry of the dinoflagellate nucleus. In F. J. R. Taylor, (ed.). The biology of dinoflagellates. Blackwell, Oxford, pp 143-173.

    Google Scholar 

  • Roberts, K. R. (1991). The flagellar apparatus and cytoskeleton of dinoflagellates: organisation and use in systematics. In D. J. Patterson and J. Larsen, (eds.). The biology of free-living heterotrophic flagellates. Clarendon Press, Oxford.

    Google Scholar 

  • Roberts, K. R., and Roberts, J. E. (1991). The flagellar apparatus and cytoskeleton of the dinoflagellates - a comparative analysis. Protoplasma 164: 105-122.

    Article  Google Scholar 

  • Rodriguez-Lanetty, M. (2003). Evolving lineages of Symbiodinium-like dinoflagellates based on ITS1 rDNA. Mol. Phylogenet. Evol. 28: 152-168.

    Article  CAS  PubMed  Google Scholar 

  • Rowan, R. (1998). Diversity and ecology of zooxanthellae on coral reefs. J. Phycol. 34: 407-417.

    Article  Google Scholar 

  • Saldarriaga, J. F., McEwen, M. L., Fast, N. M., Taylor, F. J. R., and Keeling, P. J. (2003). Multiple pro-tein phylogenies show that Oxyrrhis marina and Perkinsus marinus are early branches of the dinoflagellate lineage. Int. J. Syst. Evol. Microbiol. 53: 355-365.

    Article  CAS  PubMed  Google Scholar 

  • Saldarriaga, J. F., Taylor, F. J. R., Keeling, P. J., and Cavalier-Smith, T. (2001). Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J. Mol. Evol. 53: 204-213.

    Article  CAS  PubMed  Google Scholar 

  • Saunders, G. W., Hill, D. R. A., Sexton, J. P., and Anderson, R. A. (1997). Small-subunit ribosomal RNA sequences from selected dinoflagellates: testing classical evolutionary hypotheses with molecular systematic methods. Plant Syst. Evol. (Suppl) 11: 237-259.

    CAS  Google Scholar 

  • Schnepf, E., and Elbrächter, M. (1999). Dinophyte chloroplasts and phylogeny - a review. Grana 38: 81-97.

    Google Scholar 

  • Scholin, C., Herzog, M., Sogin, M., and Anderson, D. M. (1994). Identification of group and strain specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analy-sis of a fragment of the LSU rRNA gene. J. Phycol. 30: 999-1011.

    CAS  Google Scholar 

  • Selina, M., and Hoppenrath, M. (2004). Morphology of Sinophysis minima sp. nov. and three Sinophysis species (Dinophyceae, Dinophysiales) from the Sea of Japan. Phycol. Res. 52: 149-159.

    Article  Google Scholar 

  • Simpson, A. G. B., and Roger, A. J. (2005). The real ‘kingdoms’ of eukaryotes. Curr. Biol. 14: 693-696.

    Article  CAS  Google Scholar 

  • Skovgaard, A., Massana, R., Balague, V., and Saiz, E. (2005). Phylogenetic position of the copepod-infesting parasite Syndinium turbo (Dinoflagellata, Syndinea). Protist. 156: 413-423.

    Article  CAS  PubMed  Google Scholar 

  • Sogin, M. L. (1989). Evolution of eukaryotic microorganisms and their small-subunit ribosomal RNAs. Am. Zool. 29: 487-499.

    CAS  Google Scholar 

  • Takishita, K., Ishida, K. -I., and Maruyama, T. (2003). An enigmatic GAPDH gene in the symbiotic dinoflagellate genus Symbiodinium and its related species (the order Suessiales): possible lateral gene transfer between two eucaryotic algae, dinoflagellate and euglenophyte. Protist 154: 443-454.

    Article  CAS  PubMed  Google Scholar 

  • Takishita, K., Koike, K., Maruyama, T., and Ogata, T. (2002). Molecular evidence for plastid robbery (kleptoplastidity) in Dinophysis, a dinoflagellate causing Diarrhetic Shellfish Poisoning. Protist 153: 293-302.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, M., and Horiguchi, T. (2005). Pileidinium ciceropse gen. et sp. nov. (Dinophyceae), a sand-dwelling dinoflagellate from Palau. Eur. J. Phycol. 40: 281-291.

    Article  CAS  Google Scholar 

  • Tamura, M., Shimada, S., and Horiguchi, T. (2005). Galeidiniium rugatum gen. et sp. nov. (Dinophyceae), a new coccoid dinoflagellate with a diatom endosymbiont. J. Phycol. 41: 658-671.

    Article  CAS  Google Scholar 

  • Taylor, F. J. R. (1987). Taxonomy and classification. In F. J. R. Taylor, (ed.). The biology of dinofla-gellates. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Taylor, F. J. R. (1999). Charles Atwood Kofoid and his dinoflagellate tabulation system: an appraisal and evaluation of the phylogenetic value of tabulation. Protist 150: 213-220.

    Article  CAS  PubMed  Google Scholar 

  • Trench, R. K., and Blank, R. J.. (1987). Symbiodinium microadriaticum Freudenthal, S. goreauii sp. nov., S. kawagutii sp. nov. and S. pilosum sp. nov.: Gymnodinioid dinoflagellate symbionts of marine invertebrates. J. Phycol. 23: 469-481.

    Article  Google Scholar 

  • Villareal, T. A. (2002). Use of cell-specific PAM-fluorometry to characterize host shading in the epi-phytic dinoflagellate Gambierdiscus toxicus. Mar Ecol-Pub Del Staz Zool Di Napoli I 23: 127-140.

    Article  Google Scholar 

  • Villanoy, C. L., Azanza, R. V., Alternerano, A., and Casil, A. L. (2006). Attempts to model the bloom dynamics of Pyrodinium, a tropical toxic dinoflagellate. Harmful Algae 5: 156-183.

    Article  CAS  Google Scholar 

  • Vogelbein, W. K., Lovko, V. J., Shields, J. D., Reece, K. S., Mason, P. L., Haas, L. W., and Walker, C. C. (2002). Pfiesteria shumwayae kills fish by micropredation not exotoxin secretion. Nature 418: 967-970.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, M. M., Suda, S., Inouye, I., Sawaguchi, T., and Chihara, M. (1990). Lepidodinium viride gen. et sp. nov. (Gymnodiniales, Dinophyta), a green dinoflagellate with a chlorophyll a- and b-containing endosymbiont. J. Phycol. 26: 741-751.

    Article  Google Scholar 

  • Yamaguchi, A, and Horiguchi, T. (2005). Molecular phylogenetic study of the heterotrophic dinofla-gellate genus Protoperidinium (Dinophyceae) inferred from small subunit rRNA gene sequences. Phycol. Res. 53: 30-42.

    Article  CAS  Google Scholar 

  • Yamamoto, T., Hashimoto, T., Tarutani, K., and Kotani, Y. (2002). Effects of winds, tides and river water runoff on the formation and disappearance of the Alexandrium tamarense bloom in Hiroshima Bay, Japan. Harmful Algae 1: 301-312.

    Article  Google Scholar 

  • Yanagi, T., Yamamoto, T., Koizumi, Y., Ikeda, T., Kamizono, M., and Tamori, H. (1995). A numerical simulation of red tide formation. J. Mar. Sys. 6: 269-285.

    Article  Google Scholar 

  • Yoon, H. S., Hackett, J. D., and Bhattacharya, D. (2002). A single origin of the peridinin and fucoxanthin containing plastids in the dinoflagellates through tertiary endosymbiosis. Proc. Natl. Acad. Sci., U.S.A. 99: 11724-11729.

    Google Scholar 

  • Zhang, Z., Green, B. R, and Cavalier-Smith, T. (1999). Single gene circles in dinoflagellate chloroplast genomes. Nature 400: 155-159.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Bhattacharya, D., and Lin, S. (2005). Phylogeny of dinoflagellates based on mitochondr-ial cytochrome b and nuclear small subunit rDNA sequence comparisons. J. Phycol. 41: 411-420.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Murray, S. (2007). Phylogenetics, Molecular Biology and Ecological Impacts of a Group of Highly Unusual Protists. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_7

Download citation

Publish with us

Policies and ethics