Skip to main content

Aeroterrestrial Algae Growing on Man-Made Surfaces

What are the Secrets of their Ecological Success?

  • Chapter
Algae and Cyanobacteria in Extreme Environments

Aeroterrestrial phototrophic microorganisms typically form conspicuous biofilms in all climatic zones at the interface between any type of solid substratum and the atmosphere. In temperate regions such as North-Western Europe, eukaryotic green microalgae (Chlorophyta) are the most abundant aeroterrestrial organisms (see also Rindi, this volume), whereas cyanobacteria dominate warm-temperate to tropical regions (Ortega-Calvo et al., 1995; Tomaselli et al., 2000). Aeroterrestrial green microalgae grow epiphytically and epilithically on natural surfaces such as tree bark, soil and rock, and are known to be the photobionts of lichens (Ettl and Gärtner, 1995). These organisms also occur in urban areas on anthropogenic surfaces such as roof tiles, concrete, building facades and other artificial surfaces where they cause aesthetically unacceptable discolouration known as patinas and incrustations (Gaylarde and Morton, 1999; Tomaselli et al., 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arndt, H., GĂĽde, H., Macek, M. and Rothhaupt, K.O. 1992. Chemostats used to model the micro- bial food web: evidence for the feedback effect of herbivorous metazoans. Arch. Hydrobiol. Beih. Ergebn. Limnol. 37: 187-194.

    Google Scholar 

  • Bamforth, S.S. 2004. Water film fauna of microbiotic crusts of a warm desert. J. Arid Environ. 56: 413-423.

    Article  Google Scholar 

  • Barber, J. and Andersson, B. 1992. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem. Sci. 17: 61-66.

    Article  CAS  PubMed  Google Scholar 

  • Baroli, I., Do, A.D., Yamane, T. and Niyogi, K.K. 2003. Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell 15: 992-1008.

    Article  CAS  PubMed  Google Scholar 

  • Bertsch, A. 1966. CO2 Gaswechsel der GrĂĽnalge Apatococcus lobatus. Planta (Berlin) 70: 46-72.

    Article  Google Scholar 

  • Binnig, G., Quate, C.F. and Gerber, C. 1986. Atomic force microscope. Phys. Rev. Lett. 56: 930-933.

    Article  PubMed  Google Scholar 

  • Bjerke, J.W., Gwynn-Jones, D. and Callaghan, T.V. 2005. Effects of enhanced UV-B radiation in the field on the concentration of phenolics and chlorophyll fluorescence in two boreal and arctic-alpine lichens. Environ. Exp. Bot. 53: 139-149.

    Article  CAS  Google Scholar 

  • Brehm, U., Gorbushina, A.A. and Motterhead, D. 2005. The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219: 117-129.

    Article  Google Scholar 

  • Brenowitz, S. and Castenholz, R.W. 1997. Long-term effects of UV and visible irradiance on natural populations of a scytonemin-containing cyanobacterium (Calothrix sp.). FEMS Microbiol. Ecol. 24: 343-352.

    Article  CAS  Google Scholar 

  • BĂĽdel, B., Karsten, U. and Garcia-Pichel, F. 1997. Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivatives inexposed, rock-inhabiting cyanobacterial lichens. Oecologia 112: 165-172.

    Article  Google Scholar 

  • Casper-Lindley, C. and Björkman, O. 1998. Fluorescence quenching in four unicellular algae with dif-ferent light-harvesting and xanthophyll-cycle pigments. Photosynth. Res. 56: 277-28.

    Article  CAS  Google Scholar 

  • Cockell, C.S. and Knowland, J. 1999. Ultraviolet radiation screening compounds. Biol. Rev. 74: 311-345.

    Article  CAS  PubMed  Google Scholar 

  • Day, T.A. 2001. Ultraviolet radiation and plant ecosystems. In: C.S. Cockell and R. Blaustein (eds.) Ecosystems, Evolution, and Ultraviolet Radiation. Springer, New York. pp. 80-117.

    Google Scholar 

  • Demmig-Adams, B. and Adams, W.W. 1996, Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta 198: 460-470.

    Article  CAS  Google Scholar 

  • Dugdale, T.M., Dagastine, R., Chiovitti, A., Mulvaney, P. and Wetherbee, R. 2005. Single adhesive nanofibers from a live diatom have the signature fingerprint of modular proteins. Biophys. J. 89: 4252-4260.

    Article  CAS  PubMed  Google Scholar 

  • Dunlap, W.C. and Shick, J.M. 1998. Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J. Phycol. 34: 418-430.

    Article  Google Scholar 

  • Ettl, H. and Gärtner, G. 1995 Syllabus der Boden-, Luft- und Flechtenalgen, Gustav Fischer Verlag, Stuttgart, Germany.

    Google Scholar 

  • Feige, G. and Kremer, B.P. 1980. Unusualcarbohydrate pattern in Trentepohlia species. Phytochemistry 19: 1844-1845.

    Article  CAS  Google Scholar 

  • Fletcher, R. and Callow, M.E. 1992. Settlement, attachment and establishment of marine algal spores. Br. Phycol. J. 27: 303-329.

    Article  Google Scholar 

  • Fowler, D.M., Koulov, A.V., Alory-Jost, C., Marks, M.S., Balch, W.E. and Kelly, J.W. 2006. Functional amyloid formation within mammalian tissue. PLoS Biol. 4: 100-107.

    Article  CAS  Google Scholar 

  • Franklin, L.A. and Forster, R.M. 1997. The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur. J. Phycol. 32: 207-232.

    Google Scholar 

  • Fukuma, T., Mostaert, A.S. and Jarvis, S.P. 2006. Explanation for the mechanical strength of amyloid fibrils. Tribol. Lett. 22(3): (DOI: 10.1007/s11249-006-9086-8).

    Google Scholar 

  • Garcia-Meza, J.V., Barranguet, C. and Admiraal, W. 2005. Biofilm formation by algae as a mecha-nism for surviving on mine tailings. Environ. Toxicol. Chem. 24: 573-581.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel, F. and Castenholz, R.W. 1991. Characterization and biological implications of scy-tonemin, a cyanobacterial sheath pigment. J. Phycol. 27: 495-409.

    Article  Google Scholar 

  • Garcia-Pichel, F. and Castenholz, R.W. 1993. Occurrence of UV-absorbing, mycosporine-like com-pounds among cyanobacterial isolates and an estimate of their screening capacity. Appl. Environ. Microbiol. 59: 163-169.

    CAS  PubMed  Google Scholar 

  • Gaylarde, C.C. and Morton, L.H.G. 1999. Deteriogenic biofilms on buildings and their control: a review. Biolfouling 14: 59-74.

    Article  Google Scholar 

  • Gilmore, A.M. and Yamamoto, H.Y. 1991. Zeaxanthin formation and energy dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. Plant Physiol. 96: 635-643.

    Article  CAS  PubMed  Google Scholar 

  • Gorbushina, A.A. and Krumbein, W.E. 2005. Role of organisms in wear down of rocks and miner-als. In: F. Buscot and A. Varma (eds.) Microorganisms in Soils: Roles in Genesis and Functions. Springer, New York. pp. 59-84.

    Chapter  Google Scholar 

  • Gröninger, A. and Häder, D.P. 2002. Induction of the synthesis of an UV-absorbing substance in the green alga Prasiola stipitata. J. Photochem. Photobiol. B: Biol. 66: 54-59.

    Article  Google Scholar 

  • Häubner, N., Schumann, R. and Karsten, U. 2006. Aeroterrestrial algae growing on facades -response to temperature and water stress. Microb. Ecol. 51: 285-293.

    Article  PubMed  Google Scholar 

  • Hoyer, K., Karsten, U., Sawall, T. and Wiencke, C. 2001. Photoprotective substances in Antarctic macroalgae and their variation with respect to depth distribution, different tissues and developmental stages. Mar. Ecol. Prog. Ser. 211: 117-129.

    Article  CAS  Google Scholar 

  • Iturriaga, R., Mitchell, B.G. and Kiefer, D.A. 1988. Microphotometric analysis of individual particle absorption spectra. Limnol. Oceanogr. 33: 128-135.

    Article  Google Scholar 

  • Karsten, U., Friedl, T., Schumann, R., Hoyer, K. and Lembcke, S. 2005. Mycosporine like amino acids (MAAs) and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J. Phycol. 41: 557-566.

    Article  CAS  Google Scholar 

  • Kogej, T., Gostincar, C., Volkmann, M., Gorbushina, A. and Gunde-Cimerman, N. 2006. Mycosporines in extremophilic fungi - novel complementary osmolytes? Environ. Chem. 3: 105-110.

    Article  CAS  Google Scholar 

  • KĂĽhl, M., Glud, R.N., Ploug, H. and Ramsing, N.B. 1996. Microenvironmental control of photosyn-thesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J. Phycol. 32: 799-812.

    Article  Google Scholar 

  • Lange, O.L., Bilger, W. and Schreiber, U. 1989. Chlorophyll fluorescence of lichens containing green and blue-green algae during hydration by water vapor uptake and by addition of liquid water. Bot. Acta 102: 306-313.

    Google Scholar 

  • Lange, O.L., Belnap, J., Reichenberger, H. and Meyer, A. 1997. Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temper-ature responses of CO2 exchange. Flora 192: 1-15.

    Google Scholar 

  • ´, J., Bernardini, P., Sacchi, A. and Komenda J. 1999. Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: changes in chlorophyll fluorescence quenching and the xanthophyll cycle. Planta 209: 126-135.

    Google Scholar 

  • Matthes, U., Turner, S.J. and Larson, D.W. 2001. Light attenuation by limestone rock and its con-straint on the depth distribution of endolithic algae and cyanobacteria. Int. J. Plant Sci. 162: 263-270.

    Article  Google Scholar 

  • May, E., Lewis, F.J., Pereira, S., Tayler, S., Seaward, M.R.D. and Allsopp, D. 1993. Microbial deteri-oration of building stone - a review. Biodeterior. Abstr. 7: 109-123.

    Google Scholar 

  • Mostaert, A.S., Higgins, M.J., Fukuma, T., Rindi, F. and Jarvis, S.P. 2006. Nanoscale mechanical characterisation of amyloid fibrils discovered in a natural adhesive. J. Biol. Phys. (DOI: 10.1007/s10867-006-9023-y).

    Google Scholar 

  • Nay, M. 2003. Algen und Pilze an Fassaden- Forschung an der EMPA St. Gallen. Altbauinstandsetzung 5/6: 119-128.

    Google Scholar 

  • Niyogi, K.K., Björkman, O. and Grossman, A.R. 1997. The roles of specific xanthophylls in photo-protection. Proc. Natl. Acad. Sci. U.S.A. 94: 14162-14167.

    Article  CAS  PubMed  Google Scholar 

  • Oren, A. 2007. Diversity of Organic Osmotic Compounds and Osmotic Adaptation in Cyanobacteria and Algae. In: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments, Springer, Dordrecht (in press).

    Google Scholar 

  • Oren, A., KĂĽhl, M. and Karsten, U. 1995. An endoevaporitic microbial mat within a gypsum crust: zona-tion of phototrophs, photopigments, and light penetration. Mar. Ecol. Prog. Ser. 128: 151-159.

    Article  Google Scholar 

  • Ortega-Calvo, J.J., Arino, X., Hernandez-Marine, M. and Saiz-Jimenez, C. 1995. Factors affecting the weathering and colonisation of monuments by phototrophic microorganisms. Sci. Tot. Environ. 167: 329-341.

    Article  CAS  Google Scholar 

  • Palmer R.J. Jr., and Friedmann, I.E. 1990. Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microb. Ecol. 19: 111-118.

    Article  PubMed  Google Scholar 

  • Pattanaik, B., Schumann, R. and Karsten, U. 2007. Effects of Ultraviolet Radiation on Cyanobacteria and their Protective Mechanisms. In: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments, Springer, Dordrecht (in press).

    Google Scholar 

  • Reisser, W. and Houben, P. 2001. Different strategies of aeroterrestrial algae in reacting to increased levels of UV-B and ozone. Nova Hedwigia 123: 291-296.

    Google Scholar 

  • Rindi, F. 2007. Diversity, Distribution and Ecology of Green Algae and Cyanobacteria in Urban Habitats. In: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments, Springer, Dordrecht (in press).

    Google Scholar 

  • Rindi, F. and Guiry, M.D. 2004. Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia 43: 225-235.

    Google Scholar 

  • Schumann, R., Eixler, S. and Karsten, U. 2004. Fassadenbesiedelnde Mikroalgen. In: E. Cziesielski (ed.) Bauphysikkalender 2004. Ernst und Sohn Verlag Berlin. pp. 561-584.

    Google Scholar 

  • Smith, B.L., Schäffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E. and Hansma, P.K. 1999. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399: 761-763.

    Article  CAS  Google Scholar 

  • Stal, L.J. 2003. Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiol. J. 20: 463-478.

    Article  CAS  Google Scholar 

  • Thompson, A.J. and Sinsabaugh, R.L. 2000. Matric and particulate phosphatase and aminopeptidase activity in limnetic biofilms. Aquat. Microb. Ecol. 21: 151-159.

    Article  Google Scholar 

  • Tomaselli, L., Lamenti, G., Bosco, M. and Tiano, P. 2000. Biodiversity of photosynthetic microor-ganisms dwelling on stone monuments. Int. Biodeterior. Biodegrad. 46: 251-258.

    Article  Google Scholar 

  • Tormo, R., Recio, D., Silva, I. and Munoz, A.F. 2001. A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in south-west Spain. Eur. J. Phycol. 36: 385-390.

    Article  Google Scholar 

  • Vass, I. 1997. Adverse effects of UV-B light on the structure and function of the photosynthetic appa-ratus. In: M. Pessaraki (ed.) Handbook of Photosynthesis. Marcel Dekker Inc., New York. pp. 931-949.

    Google Scholar 

  • Volkmann, M. and Gorbushina, A.A. 2006. A broadly applicable method for extraction and charac-terization of mycosporines and mycosporine-like amino acids of terrestrial, marine and freshwater origin. FEMS Microbiol. Lett. 255: 286-295.

    CAS  Google Scholar 

  • Wright, R.F., Alewell, C., Cullen, J.M., Evans, C.D., Marchetto, A., Moldan, F., Prechtel, A. and Rogora, M. 2001. Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Hydrol. Earth Syst. Sci. 5: 299-310.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Karsten, U., Schumann, R., Mostaert, A. (2007). Aeroterrestrial Algae Growing on Man-Made Surfaces. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_32

Download citation

Publish with us

Policies and ethics