Skip to main content

Fundamental problems in investigating on extinct or extant life on Mars, concern the presence of water and finding out to what extent living organisms may survive at its very low temperatures and atmosphere conditions. The collected data transmitted to Earth from the above-mentioned missions and the fascinating images of Mars, allowed a detailed reconstruction of the Red Planet surface; conjunctures were made about water as not an unknown element, at least in the past, on the planet. Scientists have now to ascertain if the astronomic and meteorological data about the actual conditions of Mars are compatible with the concept of life that we have on Earth (McKay et al., 1996). Once established that on Mars the actual conditions of water, temperature and atmosphere might be compatible with extreme life forms, which earthly organisms could colonize the Red Planet? About that, many other questions arise, such as life ever existed on Mars in the past or if some of the pre-existing organisms are still present somewhere; if terrestrial organisms could adapt to Mars conditions (Friedmann, 1986; Friedmann and Ocampo-Friedmann, 1995; Beaty et al., 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beaty, D.W., Clifford, S.M., Borg, L.E., Catling, D.C., Craddock, R.A., Des Marais, D.J., Farmer, J.D., Frey, H.V., Haberle, R.M., Mckay, C.P., Newsom, H.V., Parker, T.J., Segura, T. and Tanaka, K.L. (2005). Key science questions from the second conference on early Mars: geological, hydro-logic, and climatic evolution and the implications for life. Astrobiology 5: 663-689.

    Article  PubMed  Google Scholar 

  • Bell, R.A. (1993). Cryptoendolithic algae of hot semiarid lands and deserts. J. Phycol. 29: 133-139.

    Article  Google Scholar 

  • Bibring, J.-P., Squyres, S.W. and Arvidson, R.E. (2006). Merging views on Mars. Science 313: 1899-1901.

    Article  CAS  PubMed  Google Scholar 

  • Billi, D. and Grilli Caiola, M. (1996a). Effects of nitrogen and phosphorus deprivation on Chroococcidiopsis sp. (Chroococcales). Arch.Hydrobiol. Suppl. Algol. Stud. 83: 93-105.

    Google Scholar 

  • Billi, D. and Grilli Caiola, M. (1996b). Effects of nitrogen limitation and starvation on Choococcidiopsis sp. (Chroococcales). New Phytol. 133: 563-371.

    Article  CAS  Google Scholar 

  • Billi, D. and Potts, M. (2000). Life without water: responses of prokaryotes to desiccation. In: K.B. Storey and J.M. Storey (eds.) Environmental Stressors and Gene Responses. Elsevier Science, St. Louis, MO, pp. 181-192.

    Chapter  Google Scholar 

  • Billi, D. and Potts, M. (2002). Life and death of dried prokaryotes. Res. Microbiol. 153: 7-12.

    Article  CAS  PubMed  Google Scholar 

  • Billi, D., Friedmann, E.I., Helm, R.F. and Potts, M. (2001). Gene transfer to the desiccation-tolerant cyanobacterium Chroococcidiopsis. J. Bacteriol. 183: 2298-2305.

    Article  CAS  PubMed  Google Scholar 

  • Billi, D., Grilli Caiola, M., Paolozzi, L. and Ghelardini, P. (1998). A method for DNA extraction from the desert cyanobacterium Chroococcidiopsis and its application to identification of ftsZ. Appl. Environ. Microbiol. 64: 4053-4056.

    CAS  PubMed  Google Scholar 

  • Billi, D., Friedmann, E.I., Hofer, K.G., Grilli Caiola, M. and Ocampo-Friedmann, R. (2000a). Ionizing radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl. Environ. Microbiol. 66: 1489-1492.

    Article  CAS  PubMed  Google Scholar 

  • Billi, D., Wright, D.J., Helm, R.F., Prickett, T.F., Potts, M. and Crowe, J.H. (2000b). Engineering desiccation tolerance in Escherichia coli. Appl. Environ. Microbiol. 66: 1680-1684.

    Article  CAS  PubMed  Google Scholar 

  • Carrapico, F. (2001). The Azolla-Anabaena-bacteria system as a natural microcosm. SPIE Astrobiology Conference. Instruments, Methods, and Missions for Astrobiology IV, San Diego, Paper 4495-34, 1-5.

    Google Scholar 

  • Cockell, C.S., Schuerger, A.C., Billi, D., Friedmann, E.I. and Panitz, C. (2005). Effects of a simulated Martian UV flux on the cyanobacterium, Chroococcidiopsis sp.029. Astrobiology 5: 127-140.

    Article  CAS  PubMed  Google Scholar 

  • Cox, M.M. and Battista, J.R. (2005). Deinococcus radiodurans- the consummate survivor. Nat. Rev. Microbiol. 3: 882-892.

    Article  CAS  PubMed  Google Scholar 

  • Crowe, J.H., Crowe, L.M., Carpenter, J.E. and Meeks, J.C. (1997). Anhydrobiosis: cellular adaptation to extreme dehydration. In: W.H. Dantzler (ed.) Handbook of Physiology, vol.2, Oxford University, U. K., pp. 1445-1478.

    Google Scholar 

  • Dor, I., Carl, N. and Baldinger, I. (1991). Polymorphism and salinity tolerance as a criterion for dif-ferentiation of three new species of Chroococcidiopsis (Chroococcales). Arch. Hydrobiol. Suppl. Algol. Stud. 64: 411-421.

    Google Scholar 

  • Fewer, D., Friedl, T. and Budel, B. (2002). Chroococcidiopsis and heterocyst-differentiating cyanobac-teria are each other’s closet living relatives. Mol. Phylogenet. Evol. 23: 82-90.

    Article  CAS  PubMed  Google Scholar 

  • Friedmann, E.I. (1971). Light and scanning electron microscopy of the endolithic desert algal habi-tat. Phycologia 10: 411-428.

    Google Scholar 

  • Friedmann, E.I. (1986). The Antarctic cold desert and the search for traces of life on Mars. Adv. Space Res. 6: 265-268.

    Article  CAS  PubMed  Google Scholar 

  • Friedmann, E.I. (1993). Extreme environments, limits of adaptation and extinction. In: R. Guerrero and C. Pedrò Aliò (eds) Trends in Microbial Ecology. Spain Society for Microbiology, Barcellona, Spain, pp. 9-12.

    Google Scholar 

  • Friedmann, E.I. and Ocampo-Friedmann, R. (1985). Bluegreen algae in arid cryptoendolithic habi-tats. Arch. Hydrobiol. Suppl. Algol. Stud. 71: 349-350.

    Google Scholar 

  • Friedmann, E.I. and Ocampo-Friedmann, R. (1995). A primitive cyanobacterium as pioneer microor-ganism for terraforming Mars. Adv. Space Res. 15: 243-246.

    Article  CAS  PubMed  Google Scholar 

  • Friedmann, E.I., Lipkin, Y. and Ocampo-Paus, R. (1967). Desert Algae of the Negev (Israel). Phycologia 6: 185-199.

    Google Scholar 

  • Grilli Caiola, M. and De Vecchi, L. (1980). Akinete ultrastructure of Nostoc species isolated from cycad coralloid roots. Can. J. Bot. 58: 2513-2519.

    Article  Google Scholar 

  • Grilli Caiola, M. and De Vecchi, L. (1985). Presence and significance of pores in the cell wall of Anabaena species. Cytobios 42: 171-177.

    Google Scholar 

  • Grilli Caiola, M., Billi, D. and Friedmann, E.I. (1996a). Effect of desiccation on envelope of the cyanobacterium Chroococcidiopsis (Chroococcales). Eur. J. Phycol. 31: 97-105.

    Google Scholar 

  • Grilli Caiola, M., Canini, A. and Ocampo-Friedmann, R. (1996b). Iron superoxide dismutase (Fe-SOD) localization in Chroococcidiopsis (Chroococcales, Cyanobacteria). Phycologia 35: 90-94.

    Article  Google Scholar 

  • Grilli Caiola, M., Ocampo-Friedmann, R. and Friedmann, E.I. (1993). Cytology of long-term desic-cation in the cyanobacterium Chroococcidiopsis (Chroococcales). Phycologia 32: 315-322.

    Google Scholar 

  • McKay, C.P., Gibson, jr, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D., Maechling, C.R. and Zare, R.N. (1996). Search for past on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 271: 924-930.

    Google Scholar 

  • Meyer, M.A., Huang, G.H, Morris, G.J. and Friedmann, E.I. (1988). The effect of low temperatures on Antarctic endolithic green algae. Polarforschung 58: 113-119.

    CAS  PubMed  Google Scholar 

  • Nishida, I. and Murata, N. (1996). Chilling sensitivity in plants and cyanobqacteria:the crucial con-tribution of membrane lipids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 541-568.

    Article  CAS  PubMed  Google Scholar 

  • Kremer, B. (2006). Mat-forming coccoid cyanobacteria from early Silurian marine deposits of Sudetes, Poland. Acta. Palaeontol. Pol. 51: 143-154.

    Google Scholar 

  • Ocampo-Friedmann, R., Meyer, M.A., Chen, M. and Friedmann, E.I. (1988). Temperature response of Antarctic cryptoendolithic photosynthetic microorganisms. Polarsforschung 58: 121-124.

    CAS  Google Scholar 

  • Potts, M. (2001). Desiccation tolerance: a simple process? Trends Microbiol. 9: 553-559.

    Article  CAS  PubMed  Google Scholar 

  • Powers, R.M. (1986). Mars. Our Future on the Red Planet. Houghton Mifflin Company, Boston USA.

    Google Scholar 

  • Rothschild, L.J. and Mancinelli, R.L. (2001). Life in extreme environments. Nature 22: 1092-101.

    Article  CAS  Google Scholar 

  • Sawyer, K. (2001). Ritratto di un pianeta mai visto. National Geographic Italia 7: 30-51.

    Google Scholar 

  • Shirkey, B., Kovarcik, D.P., Wright, D.J., Wilmoth, G., Prickett, T.F., Helm, R.F., Gregory, E.M. and Potts, M. (2000). Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation. J. Bacteriol. 182: 189-197.

    Article  CAS  PubMed  Google Scholar 

  • Shirkey, B., McMaster, N.J., Smith, S.C., Wright, D.J., Rodriguez, H., Jaruga P., Birincioglu, M., Helm, R.F. and Potts, M. (2003). Genomic DNA of Nostoc commune (Cyanobacteria) becomes covalently modified during long-term (decades) desiccation but is protected from oxidative dam-age and degradation. Nucleic Acids Res. 31: 2995-3005.

    Article  CAS  PubMed  Google Scholar 

  • Sun, H.J. and Friedmann, E.I: (1999). Growth on Geological Time Scales in the Antarctic Cryptoendolithic Microbial Community. Geomicrobiol. J. 16: 193-202.

    Article  Google Scholar 

  • Warren-Rhodes, K.A., Rhodes, K.L., Pointing, S.B., Ewing, S.A., Lacap, D.C., Gómez-Silva, B., Amundson, R., Friedmann, E.I. and McKay, C.P. (2006). Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 52: 389-398.

    Article  PubMed  Google Scholar 

  • Wierzchos, J., Ascaso, C. and McKay, C.P. (2006). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6: 415-22.

    Article  PubMed  Google Scholar 

  • Whitton, B.A. (1987). Survival and dormancy of blue-green algae. In: Y. Henis (ed.) Survival and Dormancy of Microorganisms. Wiley, J. and Sons, N.Y., pp. 109-167.

    Google Scholar 

  • Zahradka, K., Slade, D., Bailone, A., Sommer, S., Averbeck, D., Petranovic, M., Lindner A.B. and Radman, M. (2006). Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443: 569-73.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Caiola, M.G., Billi, D. (2007). Chroococcidiopsis from Desert to Mars. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_30

Download citation

Publish with us

Policies and ethics