Skip to main content

Eukaryotic Community Structure from Río Tinto (SW, Spain), a Highly Acidic River

  • Chapter
Algae and Cyanobacteria in Extreme Environments

A major question in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Our ongoing exploration of the Earth has led to continued discoveries of life in environments that have been previously considered uninhabitable. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons: some of these are scientific and related to the idea that extreme environments are believed to reflect early Earth conditions; conditions that persisted for most of the time that life has been on the Earth and to which prokaryotes originally evolved and adapted (Schopf and Walter, 1982). Other reasons are more commercial, such as the use of the metabolic properties of some microorganisms for metal extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilera, A. and Amils, R. (2005) Tolerance to cadmium in Chlamydomonas sp. (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain). Aquatic Toxicol. 75,316-329.

    Article  CAS  Google Scholar 

  • Aguilera, A., Souza-Egipsy, V., Gómez, F. and Amils, R. (2006) Development and structure of eukary-otic biofilms in an extreme acidic environment, Río Tinto (SW, Spain). Microb Ecol. 53, 294-305.

    Article  Google Scholar 

  • Allan, R.J. (1995) Impact of mining activities on the terrestrial and aquatic environment. In: W. Salomons, U. Forstner, P. Mader (eds.) Heavy Metals: Problems and Solutions. SpringerVerlag, Berlin, Germany, pp. 120-140.

    Google Scholar 

  • Amaral-Zettler, L.A., Gómez, F., Zettler, E., Keenan, B.G., Amils, R. and Sogin, M.L. (2002) Eukaryotic diversity in Spain’s river of fire. Nature 417, 137.

    Article  CAS  PubMed  Google Scholar 

  • Amaral-Zettler, L.A., Messerli, M., Laatsch, A., Smith, P. and Sogin, M.L. (2003) From genes to genomes: Beyond biodiversity in Spain’s Río Tinto. Biol. Bull. 204, 205-209.

    Article  CAS  PubMed  Google Scholar 

  • Amils, R., González-Toril, E., Gómez, F., Fernández-Remolar, D., Rodríguez, N., Malki, M., Zuluaga, J., Aguilera, A. and Amaral-Zettler, L.A. (2004) Importance of chemolithotrophy for early life on Earth: The Tinto River (Iberian Pyritic Belt) case. In: J. Seckbach (ed.) Origins. Kluwer Academic Publisher, Dordrecht, pp. 463-480.

    Google Scholar 

  • Amils, R., González-Toril, E., Fernández-Remolar, D., Gómez, F., Aguilera, A., Rodríguez, N., Malki, M., García-Moyano, A., Fiaren, A.G., de la Fuente, V. and Sanz, J.L. (2006) Extreme environments as Mars terrestrial analogs: The Rio Tinto case. Planet Space Sci. 55, 370-381.

    Article  Google Scholar 

  • Baffico, G.D., Díaz, M.M., Wenzel, M.T., Koschorreck, M., Schimmele, M., Neu, T.R. and Pedrozo, F. (2004) Community structure and photosynthetic activity of epilithon from a highly acidic (pH < 2) mountain stream in Patagania, Argentina. Extremophiles 8, 465-475.

    Google Scholar 

  • Barranguet, C., Charantoni, E., M. Plans and Admiraal, W. (2000) Short-term response of mono-specific and natural algal biofilms to copper exposure. Eur. J. Phycol. 35, 397-406.

    Article  Google Scholar 

  • Battarbee, R.W., Smol, J.P. and Meriläinen, J. (1986) Diatoms as indicators of pH: An historical review. In: J.P. Smol, R.W. Battarbee, R.B. Davis and J. Meriläinen (eds.) Diatoms and Lake Acidity, Dr. W. Junk Publishers, Dordrecht, pp. 5-14.

    Google Scholar 

  • Battin, T.J., Kaplan, L.A., Newbold, J.D., Cheng, X. and Hansen, C. (2003) Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol. 69, 5443-5452

    Article  CAS  PubMed  Google Scholar 

  • Beaver, J.R. and Crisman, T.L. (1981) Acid precipitation and the response of ciliated protozoans in Florida Lakes. Verh. Int. Ver. Limnol. 21, 353-358.

    Google Scholar 

  • Bienert, R.W., Beaver, J.R. and Crisman, T.L. (1991) The contribution of ciliated protozoa to zoo-plankton biomass in an acidic subtropical lake. J. Protozool. 38, 352-354.

    Google Scholar 

  • Canovas, D., Duran, C., Rodriguez, N., Amils, R. and DeLorenzo, V. (2003) Testing the limits of biolog-ical tolerance to arsenic in a fungus isolated from the River Tinto. Environ. Microbiol. 5, 133-138.

    Article  CAS  PubMed  Google Scholar 

  • Davis, R.A., Welty, A.T., Borrego, J., Morales, J.A., Pendon, G.J., Ryan, J.G. (2000) Río Tinto estu-ary (Spain): 5000 years of pollution. Environ. Geol. 39, 1107-1116.

    Article  CAS  Google Scholar 

  • Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., Greeberg, E.P. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295-298.

    Article  CAS  PubMed  Google Scholar 

  • Deneke, R. (2000) Review of rotifers and crustaceans in highly acidic environments of pH values <3. Hydrobiologia 433, 167-172.

    Article  Google Scholar 

  • DeNicola, D.M. (2000) A review of diatoms found in highly acidic environments. Hydrobiologia 433, 111-122.

    Article  Google Scholar 

  • Durán, C., Sargeant, C., Rodríguez, N. and Amils, R. (2001) Specific Cr(III) sequestering using an aci-dophilic fungal isolate. In: V.S.T. Ciminelli, O. García (eds.) Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Vol B, Elsevier, Amsterdam, pp. 237-246.

    Google Scholar 

  • Elbaz-Poulichet, F., Dupuy, C., Cruzado, A., Velásquez, Z., Achterberg, E.P., Braungardt, C.B. (2000) Influence of sorption processes by iron oxides and algae fixation on arsenic and phosphate cycle in an acidic estuary (Tinto River, Spain). Wat. Res. 34, 3222-3230.

    Article  CAS  Google Scholar 

  • Fairén, A.G., Fernández-Remolar, D., Dohm, J.M., Boaker, V.R. and Amils, R. (2004) Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431, 423-426.

    Article  PubMed  Google Scholar 

  • Fernández-Remolar, D.C., Rodríguez, N., Gómez, F. and Amils, R. (2003) Geological record of an acidic environment driven by the iron hydrochemistry: The Tinto river system. J. Geophys. Res. 108,5080-5095.

    Article  Google Scholar 

  • Fernández-Remolar, D. C., Gómez-Elvira, J., Gómez, F., Sebastián, E., Martín, J., Manfredi, J.A., Torres, J., González Kesler, C. and Amils, R. (2004) The Tinto river, an extreme acidic environ-ment under control of iron, as an analog ofthe Terra Meridiani hematite site of Mars. Planet. Space Sci. 52, 239-248.

    Article  Google Scholar 

  • Fernández-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R. and Knoll, A.H. (2005) The Río Tinto Basin, Spain: Mineralogy, sedimentary geobiology and implications for interpretation of outcrop rocks at Maridianu Planum, Mars. Earth Planet. Sci. Lett. 240, 149-167.

    Google Scholar 

  • Fisher, M., Zamir, A. and Pick, U. (1998) Iron uptake by the halotolerant alga Dunaliella is mediated by a plasma membrane transferring. J. Biol. Chem. 273, 17553-17558.

    Article  CAS  PubMed  Google Scholar 

  • Flores, E. (1996) Tectónica Reciente en el Margen Ibérico Suroccidental. Ph.D. Thesis. Universidad de Huelva, Spain.

    Google Scholar 

  • Gadd, G.M. (1993) Interaction of fungi with toxic metals. New Phytol. 124, 25-60.

    Article  CAS  Google Scholar 

  • García-Meza, J.V., Barrangue, C. and Admiraal, W. (2005) Biofilm formation by algae as a mecha-nism for surviving on mine tailings. Environ. Toxicol. Chem. 24, 573-582.

    Article  PubMed  Google Scholar 

  • Gimmler, H. and Weis, U. (1992) Dunaliella Acidophila-Life at PH1.0. In: M. Avron and A. Ben-Amotz (eds.) Dunaliella: Physiology, Biochemistry and Biotechnology. CRC Press, Boca Ratón, Florida, pp. 99-134.

    Google Scholar 

  • Golubic, S., Seong-Joo, L. and Browne, K.M. (2000) Cyanobacteria: Architects of sedimentary struc-tures. In: R.E. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer-Verlag, Berlin, Germany, pp. 57-67.

    Google Scholar 

  • Gómez, F., Fernández-Remolar, D., González-Toril, E., Amils, R. (2004) The Tinto River, an extreme Gaian environment. In: J.R. Miller (ed.) Scientists Debate Gaia: The Next Century. MIT Press, Boston, pp. 321-333.

    Google Scholar 

  • González-Toril, E., Gómez, F., Rodríguez, N., Fenández-Remolar, D., Zuluaga, J., Marín, I. and Amils, R. (2001) Geomicrobiology of the Tinto River, a model of interest in biohydrometallurgy. In: V.S.T. Cimenelli and O. García (eds.) Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Part B. Elsevier, Amsterdam, pp. 639-650.

    Google Scholar 

  • González-Toril, E., Llobet-Brossa, E., Casamayor, E.O., Amann, R. and Amils, R. (2003) Microbial ecol-ogy of an extreme acidic environment. The Tinto River. Appl. Environ. Microbiol. 69, 4853-4865.

    Article  PubMed  Google Scholar 

  • Gross, W. (2000) Ecophysiology of algae living in highly acidic environments. Hydrobiologia 433, 31-37.

    Article  CAS  Google Scholar 

  • Hallberg, K.B. and Johnson, D.B. (2001) Biodiversity of acidophilic prokaryotes. Adv. Appl. Microbiol. 49, 37-84.

    Article  CAS  PubMed  Google Scholar 

  • Heinen, W. and Lauwers, A.M. (1985) The microflora of radioactive thermal springs: The lithobionts in the Franz Joseph Springs at Badgastein Austria. Mikroscopic 42, 124-134.

    Google Scholar 

  • Horodyski, R., Bloeser, J., Vonder Haar, S. (1977) Laminated algal mats from a coastal lagoon Laguna Mormona, Baja California, Mexico. J Sediment. Petrol. 47, 680-696

    Google Scholar 

  • Hough D.W. and Danson M.J. (1999) Extremozymes. Curr. Opin. Chem. Biol. 3, 39-46

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson, N., Nagarkar, S., Aitchison, J.C. and Williams, G.A. (2006) Microspatial variation in marine biofilm abundance on intertidal rock surfaces. Aquat. Microb. Ecol. 42, 187-197.

    Article  Google Scholar 

  • Johnson, D.B. (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol. 27, 307-317.

    CAS  Google Scholar 

  • Korte, V.L. and Blinn, D.W. (1983) Diatom colonization on artificial substrata in pool and riffle zones studied by light and scanning electron microscopy. J. Phycol. 19, 332-341

    Article  Google Scholar 

  • Lessmann, D., Fyson, A. and Nixdorf, B. (2000) Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH < 3. Hydrobiologia 433, 123-128.

    Article  Google Scholar 

  • Locke, A. (1992) Factors influencing community structure along stress gradients: Zooplankton responses to acidification. Ecology 73, 903-909.

    Article  Google Scholar 

  • López-Archilla, A.I. and Amils, R. (1999) A comparative ecological study of two acidic rivers in SW, Spain. Microb. Ecol. 38, 146-156.

    Article  Google Scholar 

  • López-Archilla, A.I., Marín, I. and Amils, R. (2001) Microbial community composition and ecology of an acidic aquatic environment: The Tinto river, Spain. Microb. Ecol. 41, 20-35.

    Google Scholar 

  • López-Archilla, A.I., González, A.E., Terrón, M.C. and Amils, R. (2005) Diversity and ecological relationships of the fungal populations of an acidic river of Southwestern Spain: The Tinto River. Can. J. Microbiol. 50, 923-934.

    Article  Google Scholar 

  • Mason, A.Z. and Jenkins, K.D. (1995) Eh-pH diagrams for geochemistry. In: Metal Speciation and Bioavailability in Aquatic Ecosystems. John Wiley & Sons Ltd., Chichester, England, pp. 236-258.

    Google Scholar 

  • Messerli, M.A., Amaral-Zettler, L.A., Zettler, E., Junh, S.K., Smith, P.J. and Sogin, L. (2005). Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile. J. Exp. Biol. 208, 2569-2579.

    Article  CAS  PubMed  Google Scholar 

  • Moller, S., Sternberg, C., Andersen, J.B., Christensen, B.B., Ramos, J.L., Givskov, M. and Molin, S. (1998) In situ gene expression in mixed-culture biofilms: Evidence of metabolic interactions between community members. Appl. Environ. Microbiol. 64, 721-732.

    CAS  PubMed  Google Scholar 

  • Nassiri, Y., Wery, J., Mansot, J.L. and Ginsburguer-Vogel, T. (1997) Cadmium bioaccumulation in Tetraselmis suecica: An electron Energy Loss Spectroscopy (EELS) study. Arch. Environ. Contam. Toxicol. 33, 156-161.

    Article  CAS  PubMed  Google Scholar 

  • Niederlehner, B.R. and Cairns, J. (1990) Effects ofincreasing acidity on aquatic protozoan communi-ties. Water, Air Soil Pollut. 52, 183-196.

    Article  CAS  Google Scholar 

  • Nixdorf, B., Mischke, U. and Lessmann, D. (1998) Chrysophytes and Chlamydomonads: Pioneer colonists in extremely acidic mining lakes (pH < 3) in Lusitania (Germany). Hydrobiologia 369/370, 315-327.

    Article  CAS  Google Scholar 

  • Nordstrom, D.K. and Southam, G. (1997) Geomicrobiology of sulphide mineral oxidation. In: J.F. Banfield and K.H. Nealson (eds.) Geomicrobiology: Interactions Between Microbes and Minerals. Vol 35, Mineralogical Society of America, Washington DC, pp. 361-390.

    Google Scholar 

  • Nordstrom, D.K. and Alpers, C.N. (1999) Negative pH, efflorescent mineralogy and consequences from environmental restoration at the Iron Mountain Superfund site, California. Proc. Natl. Acad. Sci. U.S.A. 96, 3455-3462.

    Article  CAS  Google Scholar 

  • Norton, T., Pope, J., Veltkamp, C., Banks, B., Howard, C. and Hawkins, S. (1998) Using confocal laser scanning microscopy, scanning electron microscopy and phase contrast light microscopy to examine marine biofilms. Aquat. Microb. Ecol. 16, 199-204.

    Article  Google Scholar 

  • Olaveson, M.M. and Nalewajko, C. (1994) Acid rain and freshwater algae. Arch. Hydrobiol. Beih. 42, 99-123.

    Google Scholar 

  • Packroff, G. (2000) Protozooplankton in acidic mining lakes with special respect to ciliates. Hydrobiologia 433, 157-166.

    Article  Google Scholar 

  • Rai, L.C., Jensen, T.E. and Rachlin, J.W. (1990) A morphometric and X-ray energy dispersive approach to monitoring pH-altered cadmium toxicity in Anabaena flos-aquae. Arch. Environ. Contam. Toxicol. 19, 479-487.

    Article  CAS  PubMed  Google Scholar 

  • Sabater, S., Buchaca, T., Cambra, J., Catalan, J., Guasch, H., Ivorra, N., Muñoz, I., Navarro, E., Real, M. and Romaní, A. (2003) Structure and function of benthic algal communities in an extremely acid river. J. Phycol. 39, 481-489.

    Article  CAS  Google Scholar 

  • Sanchez-España, J., López, E., Santofimia, E., Aduvire, O., Reyes, J. and Berettino, D. (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Appl. Geochem. 20, 1320-1356.

    Article  Google Scholar 

  • Schopf, J.W. and Walter. M.R. (1982) Origin and early evolution of cyanobateria: The geological evi-dence, In: N.G. Carr and B.A. Whitton (eds.) The Biology of Cyanobacteria. Oxford. Blackwell Sci. Publishers, pp. 543-564.

    Google Scholar 

  • Seckbach, J. (1999) The cyanidiophyceae: Hot spring and acidophilic algae. In: J. Seckbach (ed.) Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Acadamic Publishers, The Netherlands, pp. 427-435.

    Google Scholar 

  • Sutherland, I.W. (1999) Biofilms exopolysaccharides. In: J. Wingender, T.R. Neu, H.C. Fleming (eds.) Microbial Extracellular Polymeric Substances, Springer-Verlag, Berlin, Germany, pp. 73-92.

    Google Scholar 

  • Taylor, I.S., Paterson, D.M. and Mehlert, A. (1999) The quantitative variability and monosaccharide composition of sediment carbohydrates associated with intertidal diatom assemblages. Biogeochemistry 45, 303-327.

    CAS  Google Scholar 

  • Tolker-Nielsen, T. and Molin, S. (2000) Spatialorganization of microbial biofilm communities. Microb. Ecol. 40, 75-84.

    PubMed  Google Scholar 

  • Visviki, I. and Rachlin, J.W. (1993) Acute and chronic exposure of Dunaliella salina and Chlamydomonas bullosa to copper and cadmium: Effects on growth. Arch. Environ. Contam. Toxicol. 26, 149-153.

    Google Scholar 

  • Walton, K.C. and Johnson, D.B. (1992) Microbiological and chemical characteristics of an acidic stream draining a disused copper mine. Environ. Pollut. 76,169-175.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Aguilera, A., Amaral-Zettler, L., Souza-Egipsy, V., Zettler, E., Amils, R. (2007). Eukaryotic Community Structure from Río Tinto (SW, Spain), a Highly Acidic River. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_25

Download citation

Publish with us

Policies and ethics