Skip to main content

Extreme Acidophiles

Freshwater Algae Associated with Acid Mine Drainage

  • Chapter
Book cover Algae and Cyanobacteria in Extreme Environments

Acid mine drainage (AMD) is a phenomenon commonly associated with mining activities throughout the world. This acidification is the consequence of sulfides in rock strata becoming exposed to water and oxygen (see Section 1.2). The low pH of AMD-contaminated water bodies may resemble that of some naturally occurring freshwater systems that harbor acidophiles. For example, regions of the West Coast of the South Island of New Zealand have streams and rivers with naturally low pH produced by leaching of fumic and fluvic acids from podocarp rainforests, as well as artificially low pH systems caused by AMD (Collier et al., 1990). Ancient low-pH environments generated by volcanism may have been crucial for the origin of life on Earth (e.g., Holm and Andersson, 2005; Phoenix et al., 2006), and thus habitats resembling AMD have probably existed for billions of years. Distinctly, however, extremely acidic habitats from anthropogenic sources are associated with a massive burden of spoil and heavy metals. AMD began during the industrial revolution, and now accounts for most of the extremely acidic habitats worldwide (Johnson, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, C., and Garnier-Laplace, J. (2003) Bioaccumulation of silver-110, cobalt-60, cesium-137, and manganese-54 by the freshwater algae Scenedesmus obliquus and Cyclotella meneghiana and by suspended matter collected during a summer bloom event. Limnol. Oceanogr. 48: 2303-2313.

    Article  CAS  Google Scholar 

  • Aleissa, K.A., Shabana, E.S.I., and Al-Masoud, F.I.S. (2004) Accumulation of uranium by filamentous green algae under natural environmental conditions. J. Radioanal. Nucl. Chem. 260: 683-687.

    Article  CAS  Google Scholar 

  • Awasthi, M., and Rai, L.C. (2004) Adsorption of nickel, zinc and cadmium by immobilized green algae and cyanobacteria: a comparative study. Ann. Microbiol. 54: 257-267.

    CAS  Google Scholar 

  • Axtell, N.R., Sternberg, S.P.K., and Claussen, K. (2003) Lead and nickel removal using Microspora and Lemna minor. Bioresour. Technol. 89: 41-48.

    Article  CAS  PubMed  Google Scholar 

  • Baker, B.J., Lutz, M.A., Dawson, S.C., Bond, P.L., and Banfield, J.F. (2004) Metabolically active eukary-otic communities in extremely acidic mine drainage. Appl. Environ. Microbiol. 70: 6264-6271.

    Article  CAS  PubMed  Google Scholar 

  • Barbier, G., Oesterhelt, C., Larson, M.D., Halgren, R.G., Wilkerson, C., Garavito, R.M., Benning, C., and Weber, A.P.M. (2005) Comparative genomics of two closely related unicellular thermo-aci-dophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohy-drate metabolism of both algae. Plant Physiol. 137: 460-474.

    Article  CAS  PubMed  Google Scholar 

  • Barley, R.W., Hutton, C., Brown, M.M.E., Cusworth, J.E., and Hamilton, T.J. (2005) Trends in bio-mass and metal sequestration associated with reeds and algae at Wheal Jane Biorem pilot passive treatment plant. Sci. Total Environ. 338: 107-114.

    Article  CAS  PubMed  Google Scholar 

  • Bernoth, L., Firth, I., McAllister, P., and Rhodes, S. (2000) Biotechnologies for remediation and pol-lution control in the mining industry. Miner. Metallurg. Process. 17: 105-111.

    CAS  Google Scholar 

  • Brake, S.S., Dannelly, H.K., and Connors, K.A. (2001a) Controls on the nature and distribution of an alga in coal mine-waste environments and its potential impact on water quality. Environ. Geol. 40: 458-469.

    Article  CAS  Google Scholar 

  • Brake, S.S., Dannelly, H.K., Connors, K.A., and Hasiotis, S.T. (2001b) Influence of water chemistry on the distribution of an acidophilic protozoan in an acid mine drainage system at the aban-doned Green Valley coal mine, Indiana, USA. Appl. Geochem. 16: 1641-1652.

    Article  CAS  Google Scholar 

  • Brake, S.S., Hasiotis, S.T., and Dannelly, H.K. (2004) Diatoms in acid mine drainage and their role in the formation of iron-rich stromatolites. Geomicrobiol. J. 21: 331-340.

    Article  CAS  Google Scholar 

  • Casiot, C., Bruneel, O., Personne, J.C., Leblanc, M., and Elbaz-Poulichet, F. (2004) Arsenic oxidation and bioaccumulation by the acidophilic protozoan, Euglena mutabilis, in acid mine drainage (Carnoules, France). Sci. Total Environ. 320: 259-267.

    Article  CAS  PubMed  Google Scholar 

  • Casiraghi, M.P., Luporini, S., da, and Silva, E.M. (2005) Uptake of cadmium by Pseudokirchneriella subcapitata. Braz. Arch. Biol. Technol. 48: 1027-1034.

    Google Scholar 

  • Chen, J.Z., Tao, X.C., Xu, J., Zhang, T., and Liu, Z.L. (2005) Biosorption of lead, cadmium and mercury by immobilized Microcystis aeruginosa in a column. Process Biochem. 40: 3675-3679.

    Article  CAS  Google Scholar 

  • Chu, K.H., and Hashim, M.A. (2004) Quantitative analysis of copper biosorption by the microalga Chlorella vulgaris. Environ. Eng. Sci. 21: 139-147.

    Article  CAS  Google Scholar 

  • Collier, K.J., Ball, O.J., Graesser, A.K., Main, M.R., and Winterbourn, M.J. (1990) Do organic and anthropogenic acidity have similar effects on aquatic fauna? Oikos 59: 33-38.

    Article  Google Scholar 

  • Dodds-Smith, M.E., Payne C.A., and Gusek, J.J. (1995) Reedbeds at Wheal Jane. Mining Environ. Manag. September: 22-24.

    Google Scholar 

  • Douglas, G.E., John D.M., Williamson, D.B., and Reid, G. (1998) The aquatic algae associated with mining areas in Peninsula Malaysia and Sarawak: their composition, diversity and distribution. Nova Hedwigia 67: 189-211.

    Google Scholar 

  • El-Sheekh, M.M., El-Shouny, W.A., Osman, M.E.H., and El-Gammal, E.W.E. (2005) Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents. Environ. Toxicol. Pharmacol. 19: 357-365.

    Article  CAS  Google Scholar 

  • Ergene, A., Tan, S., Katircioglu, H., Oktem, Z. (2006) Biosorption of copper (II) on immobilized Synechocystis aquatilis. Presenius Environ. Bull. 15: 283-288.

    CAS  Google Scholar 

  • Evangelou, V.P. (1995) Pyrite Oxidation and its Control. CRC Press, New York, 275 pp.

    Google Scholar 

  • Franklin, N.M., Stauber, J.L., and Markich, S.J. (2000) A pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquat. Toxicol. 48: 275-289.

    Article  CAS  PubMed  Google Scholar 

  • Gale, N.L., and Wixson, B.G. (1979) Control of heavy metals in lead industry effluents by algae and other aquatic vegetation. In: Conf. Management and Control of Heavy Metals in the Environment, London, 1979. CEP Consultants, Edinburgh, UK, pp. 580-583.

    Google Scholar 

  • Garcia-Meza, J.V., Barrangue, C., and Admiraal, W. (2005) Biofilm formation by algae as a mecha-nism for surviving on mine tailings. Environ.Toxicol. Chem. 24: 573-581.

    CAS  Google Scholar 

  • Genter, R.B., and Lehman, R.M. (2000) Metal toxicity inferred from algal population density, heterotrophic substrate use, and fatty acid profile in a small stream. Environ. Toxicol. Chem. 19: 869-878.

    Article  CAS  Google Scholar 

  • Gong, R.M., Ding, Y., Liu, H.J., Chen, Q.Y., and Liu, Z.L. (2005) Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass. Chemosphere 58: 125-130.

    Article  CAS  PubMed  Google Scholar 

  • Graham, L.E., and Wilcox, L.W. (2000) Algae. Prentice Hall, N.J., 640 pp.

    Google Scholar 

  • Gray, N.F. (1997) Environmental impact and remediation of acid mine drainage: a management problem. Environ. Geol. 30: 62-71.

    Article  CAS  Google Scholar 

  • Gross, W. (2000) Ecophysiology of algae living in highly acidic environments. Hydrobiologia 433: 31-37.

    Article  CAS  Google Scholar 

  • Gross W., and Gross, S. (2001) Physiological characterization of the red alga Galdieria sulphuraria isolated from a mining area. Nova Hedwigia Beih. 123: 523-530.

    Google Scholar 

  • Groudeva, V.I., Groudev, S.N., and Stoyanova, A.D. (2004) Treatment of acid drainage in a uranium deposit by means of a natural wetland. Nukleonika 49, Suppl. 1: S17-S20.

    Google Scholar 

  • Gupta, V.K., Rastogi, A., Saini V.K., and Jain N. (2006) Biosorption of copper (II) from aqueous solutions by Spirogyra species. J. Colloid Interface Sci. 296: 59-63.

    Article  CAS  PubMed  Google Scholar 

  • Harding, J.S. (2006) Benthic Stream Communities in Naturally and Anthropogenically Acidified Streams on the West Coast of New Zealand. North American Benthological Society Conference, Anchorage, Alaska.

    Google Scholar 

  • Harding, J.S., and Boothroyd, I. (2004) Impacts of mining. In: J. Harding, P. Mosley. C. Pearson, and B. Sorrell (eds), Freshwaters of New Zealand, New Zealand Limnological Society and New Zealand Hydrological Society, The Caxton Press, Christchuch, pp. 36.1-36.10.

    Google Scholar 

  • Holm, N.G., and Andersson, E. (2005) Hydrothermal simulation experiments as a tool for studies of the origin of life on earth and other terrestrial planets: a review. Astrobiology 5: 444-460.

    Article  CAS  PubMed  Google Scholar 

  • Howard, E.A., Emerick, J.E., and Wildeman, T.R. (1989) The design, construction and initial operation of a research site for passive mine drainage treatment in Idaho Springs, Colorado. In: D.A. Hammer (ed.), Constructed Wetlands for Wastewater Treatment. Lewis Publishers, Ann Arbor, M.I., pp. 761-764.

    Google Scholar 

  • Johnson, D.B. (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol. 27: 307-317.

    CAS  Google Scholar 

  • Johnson, D.B., and Rang, L. (1993) Effects of acidophilic protozoa on populations of metal-mobilizing bacteria during the leaching of pyritic coal. J. Gen. Microbiol. 139: 1417-1423.

    CAS  Google Scholar 

  • Jones, D.R., Ragusa, S., Shinners, S., McAllister, R., and Unger, C. (1996) The construction and per-formance of large-scale wetlands at the Ranger uranium mine. In: 3rd International and the 21st Annual Minerals Council of Australia Environmental Workshop, 14-18 Oct, Newcastle, New South Wales, Australia, pp. 116-128.

    Google Scholar 

  • Kalin, M., Wheeler, W.N., and Meinrath, G. (2005) The removal of uranium from mining waste using algal/microbial biomass. J. Environ. Radioact. 78: 151-177.

    Article  CAS  PubMed  Google Scholar 

  • Kamjunke, N., Gaedke, U., Tittel, J., Weithoff, G., and Bell, E.M. (2004) Strong vertical differences in the plankton composition of an extremely acidic lake. Arch. Hydrobiol. 161: 289-306.

    Article  Google Scholar 

  • Kapfer, M. (1998) Assessment of the colonization and primary production of microphytobenthos in the littoral of acidic mining lakes in Lusatia (Germany). Water Air Soil Pollut. 108: 331-340.

    Article  CAS  Google Scholar 

  • Keeling, P.J. (2004) Diversity and evolutionary history of plastids and their hosts. Am. J. Bot. 91: 1481-1493.

    Article  Google Scholar 

  • Kützing, F.T. (1845) Phycologia germanica. Köhne, Nordhausen, 340 pp.

    Google Scholar 

  • LeBlond, J.B., and Duffy, L.K. (2001) Toxicity assessment of total dissolved solids in effluent of Alaskan mines using 22-h chronic Microtox® and Selenastrum capricornatum assays. Sci. Total Environ. 271: 49-59.

    Article  CAS  PubMed  Google Scholar 

  • Leduc, L.G., and Ferroni, G.D. (1994) The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol. Rev. 14: 103-120.

    Article  CAS  Google Scholar 

  • Lessmann, D., Deneke, R., Ender, R., Hemm, M., Kapfer, M., Krumbeck, H., Wollmann, K., and Nixdorf, B. (1999) Lake Plessa 107 (Lusatia, Germ.) - an extremely acidic shallow mining lake. Hydrobiologia 408-409: 293-299.

    Article  Google Scholar 

  • Lessmann, D., Fyson, A., and Nixdorf, B. (2000) Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany). Hydrobiologia 433: 123-128.

    Article  Google Scholar 

  • Lokhorst, G.M. (1996) Comparative taxonomic studies on the genus Klebsormidium (Charophyceae) in Europe. Cryptogamic Studies 5, W. Jülich (ed.) Gustav Fischer, Stuttgart, 132 pp.

    Google Scholar 

  • Lokhorst, G.M., and Star, W. (1980) Pyrenoid ultrastructure in Ulothrix (Chlorophyceae). Acta Bot. Neerl. 29: 1-15.

    Google Scholar 

  • Lokhorst, G.M., and Star, W. (1985) Ultrastructure of mitosis and cytokinesis in Klebsormidium mucosum nov. comb., formerly Ulothrix verrucosa (Chlorophyta). J. Phycol. 21: 466-476.

    Google Scholar 

  • Lottermoser, B.G., Ashley P.M., Lawie D.C. (1999) Environmental geochemistry of the Gulf Creek copper mine area, north-eastern New South Wales, Australia. Environ. Geol. 39: 61-74.

    Article  CAS  Google Scholar 

  • Macfarlane, G.R., and Burchett M.D. (2001) Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Mar. Pollut. Bull. 42: 233-240.

    Article  CAS  PubMed  Google Scholar 

  • Marchand, E.A., and Silverstein, J. (2002) Influence of heterotrophic microbial growth on biological oxidation of pyrite. Environ. Sci. Technol. 36: 5483-5490.

    Article  CAS  PubMed  Google Scholar 

  • Marchant, H.J., Pickett-Heaps, J.D., and Jacobs, K. (1973) An ultrastructureal study of zoosporogenesis and the mature zoospore of Klebsormidium flaccidum. Cytobios 8: 95-107.

    CAS  PubMed  Google Scholar 

  • Mayo, A.W. (1997) Effects of temperature and pH on the kinetic growth of unialga Chlorella vulgaris cultures containing bacteria. Water Environ. Res. 69: 64-72.

    CAS  Google Scholar 

  • McIntosh, J.M., Silver, M., and Groat, L.A. (1997) Bacteria and the breakdown of sulfide minerals. In: J.M. McIntosh and L.A. Groat (eds.) Biological-Mineralogical Interactions, Mineralogical Association of Canada, Short-course handbook 25: 63-92.

    Google Scholar 

  • Moreira-Santos, M., Soares, A.M.V.M., and Ribeiro, R. (2004) An in situ bioassay for freshwater environments with the microalga Pseudokirchneriella subcapitata. Ecotoxicol. Environ. Safe. 59: 164-173.

    Article  CAS  Google Scholar 

  • Morison, M.O., and Sheath, R.G. (1985) Responses to desiccation stress by Klebsormidium rivulare (Ulotrichales, Chlorophyta) from a Rhode Island stream. Phycologia 24: 129-145.

    CAS  Google Scholar 

  • Nakanishi, Y., Sumita, M., Yumita, K., Yamada, T., and Honjo, T. (2004) Heavy-metal pollution and its state in algae in Kakehashi River and Godani River at the foot of Ogoya mine, ishikawa pre-fecture. Anal. Sci. 20: 73-78.

    Article  CAS  PubMed  Google Scholar 

  • Niinioja, R., Holopainen, A.-L., Hämäläinen, H., Heitto, L., Luotonen, H., Mononen, P., and Rämö, A. (2003) State of Lake Sysmäjärvi, Eastern Finland, after loading with mine water and municipal waste water for several decades. Hydrobiologia 506-509: 773-780.

    Article  CAS  Google Scholar 

  • Niyogi, D.K., McKnight, D.M., and Lewis, W.M. (1999) Influences of water and substrate quality for periphyton in a montane stream affected by acid mine drainage. Limnol. Oceanogr. 44: 804-809.

    Article  CAS  Google Scholar 

  • Niyogi, DK., Lewis, W.M., and McKnight, D.M. (2002) Effects of stress from mine drainage on diver-sity, biomass, and function of primary producers in mountain streams. Ecosystems 5: 554-567.

    CAS  Google Scholar 

  • Nordstrom, D.K., and Alpers, C.N. (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc. Natl. Acad. Sci. USA 96: 3455-3462.

    Article  CAS  Google Scholar 

  • Novis, P.M. (2005) The effect of filamentous green algae on the chemistry of water from sites con-taminated by abandoned mines in Westland, New Zealand. Internal report, Landcare Research, Lincoln, New Zealand.

    Google Scholar 

  • Novis, P.M. (2006) Taxonomy of Klebsormidium (Klebsormidiales, Charophyceae) in New Zealand streams, and the significance of low pH habitats. Phycologia 45: 293-301.

    Article  Google Scholar 

  • Nozaki, H., Ohta, N., Matsuzaki, M., Misumo, O., and Kuroiwa, T. (2003) Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences. J. Mol. Evol. 57: 377-382.

    Article  CAS  PubMed  Google Scholar 

  • Olaveson, M.M., and Nalewajko, C. (2000) Effects of acidity on the growth of two Euglena species. Hydrobiologia 433: 39-56.

    Article  CAS  Google Scholar 

  • Pawlik-Skowron´ska, B. (2001) Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water; effects of some environmental factors. Aquat. Toxicol. 52: 241-249.

    Article  Google Scholar 

  • Pawlik-Skowron´ska, B. (2003) Resistance, accumulation and allocation of zinc in two ecotypes of the green alga Stigeoclonium tenue Kütz. coming from habitats of different heavy metal concentra-tions. Aquat. Bot. 75: 189-198.

    Article  Google Scholar 

  • Pellon, A., Benitez, F., Frades, J., Garcia, L., Cerpa, A., and Alguacil, F.J. (2003) Using microalgae Scenedesmus obliquus in the removal of chromium present in plating wastewaters. Rev. Metalurg. 39: 9-16.

    Article  CAS  Google Scholar 

  • Perrin, C.J., Wilkes, B., and Richardson, J.S. (1992) Stream periphyton and benthic insect responses to additions of treated and mine drainage in a continuous-flow on-site mesocosm. Environ. Toxicol. Chem. 11: 1513-1525.

    Article  CAS  Google Scholar 

  • Phillips, P., Bender, J., Simms, R., Rodruiguezeaton, S., and Britt, C. (1995) Manganese removal from acid coal-mine drainage by a pond containing green algae and microbial mat. Water Sci. Technol. 31: 161-170.

    CAS  Google Scholar 

  • Phoenix, V.R., Bennett, P.C., Engel, A.S., Tyler, S.W., and Ferris, F.G. (2006) Chilean high-altitude hot-spring sinters: a model system for UV screening mechanisms by early Precambrian cyanobacteria. Geobiology 4: 15-28.

    Article  CAS  Google Scholar 

  • Pinto, E., Sigaud-Kutner, T.C.S., Leitaõ, M.A.S., Okamoto, O.K., Morse, D., and Colepicolo, P. (2003) Heavy metal induced oxidative stress in algae. J. Phycol. 39: 1008-1018.

    Article  CAS  Google Scholar 

  • Raven, J.A., Evans, M.C.W., and Korb, R.E. (1999) The role of trace metals in photosynthetic elec-tron transport in O2-evolving organisms. Photosyn. Res. 60: 111-149.

    Article  CAS  Google Scholar 

  • Rousch, J.M., and Sommerfeld, M.R. (1999) Effect of manganese and nickel on growth of selected algae in pH buffered medium. Water Res. 33: 2448-2454.

    Article  CAS  Google Scholar 

  • Russell, R.A., Holden, P.J., Wilde, K.L., and Neilan, B.A. (2003) Demonstration of the use of Scenedesumus and Carteria biomass to drive bacterial sulfate reduction by Desulfovibrio alco-holovorans isolated from an artificial wetland. Hydrometalurgy 71: 227-234.

    Article  CAS  Google Scholar 

  • Sabater, S., Buchaca, T., Cambra, J., Catalan, J., Guasch, H., Ivorra, N., Muñoz, I., Navarro, E., Real, M., and Romaní, A. (2003) Structure and function of benthic algal communities in an extremely acidic river. J. Phycol. 39: 481-489.

    Article  CAS  Google Scholar 

  • Safonova, E., Kvitko, K.V., Iankevitch, M.I., Surgko, L.F., Afti, I.A., and Reisser, W. (2006) Biotreatment of industrial wastewater by selected algal-bacterial consortia. Eng. Life Sci. 4: 347-353.

    Article  CAS  Google Scholar 

  • Salonen, V.P., Tuovinen, N., and Valpola, S. (2006) History of mine drainage impact on Lake Orijarvi algal communities, SW Finland. J. Paleolimnol. 35: 289-303.

    Article  Google Scholar 

  • Sand, W., Gerke, T., Hallmann, R., and Schippers, A. (1995) Sulfur chemistry, biofilm, and the (in)direct attack mechanism - a critical evaluation of bacterial leaching. Appl. Microbiol. Biot. 43: 961-966.

    Article  CAS  Google Scholar 

  • Sasaki, A., Ito A., Aizawa J., and Umita, T. (2005) Influence of water and sediment quality on benthic biota in an acidified river. Water Res. 39: 2517-2526.

    Article  CAS  PubMed  Google Scholar 

  • Singer, P.C., and Strumm, W. (1970) Acidic mine drainage: the rate-determining step. Science 167: 1121-1123.

    Article  CAS  PubMed  Google Scholar 

  • Singh, B., Wilson M.J., McHardy, W.J., Fraser, A.R., and Merrington, G. (1999) Mineralogy and chemistry of ochre sediments from an acid mine drainage near a disused mine in Cornwall, UK. Clay Miner. 34: 301-317.

    Article  CAS  Google Scholar 

  • Soldo, D., Hari, R., Sigg, L., and Behra, R. (2005) Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat. Toxicol. 71: 307-317.

    Article  CAS  PubMed  Google Scholar 

  • Stauber, J.L., Benning, R.J., Hales, L.T., Eriksen, R., and Nowak, B. (2000) Copper bioavailability and amelioration of toxicity in Macquarie Harbour, Tasmania, Australia. Mar. Freshw. Res. 51: 1-10.

    Article  CAS  Google Scholar 

  • Steinman, A.D., and Sheath, R.G. (1984) Morphological variability of Eunotia pectinalis (Bacillariophyceae) in a softwater Rhode Island stream and in culture. J. Phycol. 20: 266-276.

    Article  Google Scholar 

  • Stevens, A.E., McCarthy, B.C., and Vis, M.L. (2001) Metal content of Klebsormidium-dominated (Chlorophyta) algal mats from acid mine drainage waters in southeastern Ohio. J. Torrey Bot. Soc. 128: 226-233.

    Article  Google Scholar 

  • Tate, C.M., Broshears, R.E., and McKnight, D.M. (1995) Phosphate dynamics in an acidic mountain stream: interactions involving algal uptake, sorption by iron oxide, and photoreduction. Limnol. Oceanogr. 40: 938-946.

    Article  CAS  Google Scholar 

  • Tittel, J., Bissinger, V., Gaedke, U., and Kamjunke, N. (2005) Inorganic carbon limitation and mixotrophic growth in Chlamydomonas from an acidic mining lake. Protist 156: 63-75.

    Article  CAS  PubMed  Google Scholar 

  • Trumm, D.A., Black, A., Gordon, K., Cavanagh, J., and deJoux, A. (2005) Acid mine drainage assess-ment and remediation at an abandoned West Coast coal mine. In: A. Moore, A. Black, J.A. Centeno, J.S. Hardin, and D.A. Trumm (eds) Metal Contaminants in New Zealand, Sources, Treatments, and Effects on Ecology and Human Health. Resolutionz Press, Christchurch, pp. 317-342.

    Google Scholar 

  • Tuzun I., Bayramoglu, G., Valcin, E., Basaran, G., Celik, G., and Arica, M.Y. (2005) Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. J. Environ. Manage. 77: 85-92.

    Article  CAS  PubMed  Google Scholar 

  • USEPA (2006) National primary drinking water standards. Obtained 2 May 2006 from http://www.epa.gov/safewater/consumer/pdf/mcl.pdf.

  • Van Hille, R.P., Boshoff, G.A., Rose, P.D., Duncan, J.R. (1999) A continuous process for the biologi-cal treatment of heavy metal contaminated acid mine water. Resour. Conserv. Recycl. 27: 157-167.

    Article  Google Scholar 

  • Van Ho, A., Ward, D.M., Kaplan, J. (2002) Transition metal transport in yeast. Annu. Rev. Microbiol. 56: 237-261.

    Article  CAS  PubMed  Google Scholar 

  • Vinyard, G.L. (1996) A chemical and biological assessment of water quality impacts from acid mine drainage in a first order mountain stream, …comparison of two bioassay techniques. Environ. Technol. 17: 273-281.

    Article  CAS  Google Scholar 

  • Verb, R.G., and Vis, M.L. (2001) Macroalgal communities from an acid mine drainage impacted watershed. Aquat. Bot. 71: 93-107.

    Article  Google Scholar 

  • Whitton, B.A., and Diaz, B.M. (1981) Influence of environmental factors on photosynthetic species composition in highly acidic waters. Verh. Internat. Verein. Limnol. 21: 1459-1465.

    Google Scholar 

  • Wicks, C.M., Herman, J.S., and Mills, A.L. (1991) Early diagenesis of sulfur in the sediments of lakes that receive acid mine drainage. Appl. Geochem. 6: 213-224.

    Article  CAS  Google Scholar 

  • Winterbourn, M.J., McDiffett, W.F., and Eppley, S.J. (2000) Aluminium and iron burdens of aquatic biota in New Zealand streams contaminated by acid mine drainage: effects of trophic level. Sci. Total Environ. 254: 45-54.

    Article  CAS  PubMed  Google Scholar 

  • Woelfl, S., Tittel, J., Zippel, B., and Kringel, R. (2000) Occurrence of an algal mass development in an acidic (pH 2.5), iron and aluminium-rich coal mining pool. Acta Hydrochim. Hydrobiol. 28: 305-309.

    CAS  Google Scholar 

  • Wollmann, K., Deneke, R., Nixdorf, B., and Packroff, G. (2000) Dynamics of planktonic food webs in three mining lakes across a pH gradient (pH 2-4). Hydrobiologia 433: 3-14.

    Article  CAS  Google Scholar 

  • Xie J.Z., Chang, H.L., and Kilbane J.J. (1996) Removal and recovery of metal ions from wastewater using biosorbents and chemically modified biosorbents. Bioresour. Technol. 57: 127-136.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Novis, P.M., Harding, J.S. (2007). Extreme Acidophiles. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_24

Download citation

Publish with us

Policies and ethics