Skip to main content

Algae at Extreme Low Temperatures

The Cryobank

  • Chapter

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 11))

In vitro cryopreservation is the storage of viable cells at ultra-low temperatures (196ºC), usually in liquid nitrogen or its vapor phase. Under these conditions it is assumed that metabolism is arrested and cells are stable for indefinite periods, so long as liquid nitrogen supply is maintained. The fact that cells tolerate cryogenic temperatures is remarkable as survival after cryopreservation is common to a wide range of biodiversity. The in vitro cryobank is one of the most, if not the most extreme low-temperature environment that an organism, or component part thereof, will ever encounter on earth. It is fascinating to speculate how, with the aid of cryoprotection (Fuller, 2004) so many diverse life-forms survive such extreme cold. Cryopreservation has important applications for astrobiology and in vivo studies of extremophiles; as water and temperature are physical determinants of life, indeed water is a prerequisite for life. This chapter considers cryoconservation in a wider context, appraising the comparative utilities of both natural and artificial cryobanks as repositories and research tools that may be used to help understand how life survives extreme cold. Algae are the subject of choice as they are one of the oldest and most diverse groups of organisms; their ancestral, fossil remains have been found in strata dating from 1.4 billion to 2.1 billion years (Cloud et al., 1969; Han and Runnegar, 1992). Algae are ubiquitous primary producers and formidable extremophiles, yet, compared with other biological resources, their preservation in cryobanks (Day et al., 2005) and their utilization as a valuable economic resource remains limited.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman, R., Saul, R.L. and Ames, B.N. (1988) Oxidative damage to DNA: relation to species meta-bolic rate and life span. Proc. Natl. Acad. Sci. USA 85, 2706-2708.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, R.A. (1996) Algae, in: J.C. Hunter-Cevera and A. Belt (eds.) Maintaining Cultures for Biotechnology and Industry. Academic Press, London, UK, pp. 29-64.

    Chapter  Google Scholar 

  • Andersen, R.A. (2005) The Provasoli-Guillard National Center for Culture of Marine Phytoplankton: past, present and future, in: F. Kasai, K. Kaya and M.M. Watanabe (eds.) Culture Collections and Environmental Research. Tokai University Press, Tokyo, pp. 65-72. 73-86.

    Google Scholar 

  • Kaya K. and Kasai F. (eds.). Ball, P. (ed.) (2003) H2O A Biography of Water, Phoenix, Orion Books Ltd., London, UK.

    Google Scholar 

  • Benson, E.E. (2004) Cryo-conserving algal and plant diversity: historical perspectives and future chal-lenges, in: B. Fuller, N. Lane and E.E. Benson (eds.) Life in the Frozen State. CRC Press, London, UK, pp. 299-328.

    Google Scholar 

  • Benson, E.E. (2006) Cryopreservation theory, in: B.M. Reed(ed.) In Plant Cryopreservation: A Practical Guide. Springer, Heidelberg..

    Google Scholar 

  • Benson, E.E. and Bremner, D.H. (2004) Oxidative stress in the frozen plant: a free radical point of view, in: B. Fuller, N. Lane and E.E. Benson (eds.) Life in the Frozen State. CRC Press, London, UK, pp. 205-242.

    Google Scholar 

  • Benson, E.E., Johnston, J., Muthusamy, J. and Harding, K. (2005) Physical and engineering perspec-tives of in vitro plant cryopreservation, in: S. Dutta Gupta and Y. Ibaraki (eds.) Plant Tissue Culture Engineering. Springer, Dordrecht, Netherlands, pp. 441-473.

    Google Scholar 

  • Bodas, K., Brennig, C., Diller, K.R. and Brand, J.J. (1995) Cryopreservation of blue-green and eukary-otic algae in the culture collection at the University of Texas at Austin. Cryo Letters 16, 267-274.

    Google Scholar 

  • Buitink, J., LePrince, O., Hemminga, M.A. and Hoekstra, A.A. (2000) Molecular mobility in the cyto-plasm: an approach to describe and predict lifespan in dry germplasm. Proc. Natl. Acad. Sci. USA 97, 2385-2390.

    Article  CAS  PubMed  Google Scholar 

  • Cloud, P.E. Jr., Licori, G.R., Wright, L.R. and Troxel, B.W. (1969) Proterozoic eukaryotes from Eastern California. Proc. Natl. Acad. Sci. USA 63, 623-630.

    Article  Google Scholar 

  • Day, J.G. and Brand, J.J. (2005) Cryopreservation methods for maintaining cultures, in: R.A. Andersen (ed.) Algal Culturing Techniques. Academic Press, New York. pp. 165-187.

    Chapter  Google Scholar 

  • Day, J.G. and Harding, K. (2006) Cryopreservation of algae, in: B.M. Reed (ed.) Plant Cryopreservation: A Practical Guide. Springer, Heidelberg.

    Google Scholar 

  • Day, J.G., Watanabe, M.M., Morris, G.J., Fleck, R.A. and McLellan, M.R. (1997) Long-term viabil-ity of preserved eukaryotic algae. J. Appl. Phycol. 9, 121-127.

    Article  Google Scholar 

  • Day, J.G., Benson, E.E. and Fleck, R.A. (1999) In Vitro culture and conservation of microalgae: applica-tions for aquaculture, biotechnology and environmental research. In Vitro Plant Cell 35, 127-136.

    Article  CAS  Google Scholar 

  • Day, J.G., Fleck, R.A. and Benson, E.E. (2000) Cryopreservation-recalcitrance in microalgae: novel approaches to identify and avoid cryo-injury. J. Appl. Phycol. 12, 369-377.

    Article  Google Scholar 

  • Day, J.G., Benson, E.E., Harding, K., Knowles, B., Idowu, M., Bremner, D., Santos, L., Santos, F., Friedl, T., Lorenz, M., Lukesova, A., Elster, J., Lukavsky, J., Herdman, M., Rippka, R. and Hall, T. (2005) Cryopreservation and conservation of microalgae: the development of a pan-European scientific and biotechnological resource (the COBRA project). Cryo Letters 26, 231-238.

    CAS  PubMed  Google Scholar 

  • Diller, K.R. (1997) Pioneers in cryobiology: Nikolay Aleksandrovich Maximov (1890-1952). Cryo Letters 18, 81-92.

    Google Scholar 

  • Elster, J. and Benson, E.E. (2004) Life in the polar terrestrial environment: a focus on algae and cyanobacteria, in: B. Fuller, N. Lane and E.E. Benson (eds.) Life in the Frozen State. CRC Press, London, UK, pp. 111-150.

    Google Scholar 

  • Fahy, G.M., Wowk, B., Wu, J. and Paynter, S. (2004) Improved vitrification solutions based on the pre-dictability of vitrification solution toxicity. Cryobiology 48, 22-35.

    Article  CAS  PubMed  Google Scholar 

  • Fleck, R.A., Pickup, R.W., Day, J.G. and Benson, E.E. (2006) Characterisation of cryoinjury in Euglena gracilis using flow-cytometry and cryomicroscopy. Cryobiology 52, 261-268.

    Article  CAS  PubMed  Google Scholar 

  • Floyd, R.A., West, M. and Hensley, K. (2001) Oxidative biochemical markers: clues to understanding ageing in long-lived species. Experimental Geritology 36, 619-640.

    Article  CAS  Google Scholar 

  • Friedl, T. and Lorenz, M. (2002) The SAG culture collection: microalgal biodiversity and phylogeny research, in: Abstracts of Culture Collections of Algae: Increasing Accessibility and Exploring Algal Biodiversity. 2-6 September 2002, Sammlung von Algenkulturen (SAG), Göttingen University, Germany.

    Google Scholar 

  • Fuller, B. (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Letters 25, 375-388.

    CAS  PubMed  Google Scholar 

  • Fuller, B., Lane, N. and Benson E.E. (eds.) (2004) Life in the Frozen State, CRC Press, Boca Raton, London, UK.

    Google Scholar 

  • Han, T.M. and Runnegar, B. (1992) Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee iron formation. Mich. Sci. 257, 232-235.

    CAS  Google Scholar 

  • Harding, K. (1999). Stability assessments of conserved plant germplasm, in: E.E. Benson (ed.) Plant Conservation and Biotechnology. Taylor and Francis Ltd., London, UK, pp. 97-107.

    Google Scholar 

  • Harding, K. (2004) Genetic integrity of cryopreserved plant cells: A review. Cryo Letters 25, 3-22.

    PubMed  Google Scholar 

  • Harding, K., Day, J.G., Lorenz, M., Timmerman, H., Friedl, T., Bremner, D.H. and Benson, E.E. (2004) Introducing the concept and application of vitrification for the cryo-conservation of algae - A mini-review. Nova Hedwigia 79, 207-226.

    Article  Google Scholar 

  • Harding, K., Johnston, J. and Benson, E.E. (2005) Plant and algal cell cryopreservation: issues in genetic integrity, concepts in ‘Cryobionomics’ and current European applications, in: I.J. Benett, E. Bunn, H. Clarke and J.A. McComb (eds.) Conference of the Australian Branch of the IATPC and Biotechnology - Contributing to a Sustainable Future. Perth, WA, Australia, pp. 112-119.

    Google Scholar 

  • Hawksworth, D.L. (ed.) (1999) World Federation for Culture Collections guidelines for the establish-ment and operation of collections of cultures of microorganisms. WFCC Cambridge, UK.

    Google Scholar 

  • Hoover, R.B. (2006) Comets, carbonaceous meteorites and the origin of the biosphere. Biogeosci. Discuss. 3, 23-70.

    Article  Google Scholar 

  • Jaworski, G.H.M., Wiseman, S.W. and Reynolds, C.S. (1988) Variability in sinking rate of the fresh-water diatom Asterionella formosa: the influence of colony morphology. Br. Phycol. J. 23, 167-176.

    Article  Google Scholar 

  • Johnstone, C., Block, W., Benson, E.E., Day, J.G., Staines, H. and Illian, J.B. (2002) Assessing meth-ods for collecting and transferring viable algae from Signy Island, maritime Antarctic to the UK. Polar Biol. 25, 553-556.

    Article  Google Scholar 

  • Johnstone, C., Day, J.G., Staines, H. and Benson, E.E. (2006a) Development of 2,2′-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid)radical cation decolourisation assay for evaluating total antioxidant status in an alga used to monitor environmental impacts in urban aquatic habitats. Ecol. Indicators 6, 280-289.

    Article  CAS  Google Scholar 

  • Johnstone, C., Day, J.G., Staines, H. and Benson, E.E. (2006b) An in vitro oxidative stress test for determining pollutant tolerance in algae. Ecol. Indicators. 6, 770-779.

    Article  Google Scholar 

  • Jokipii, S., Ryynanen, L., Kallio, P.T., Aronen, T. and Haggman, H. (2004) A cryopreservation method maintaining the genetic fidelity of a model forest tree, Populus tremula L. X Populus tremuloides Michx. Plant Sci. 166, 799-806.

    Article  CAS  Google Scholar 

  • Kanervo, E., Lehto, K., Ståhle, K., Lehto, H. and Mäenpää, P. (2005) Characterization of growth and photosynthesis of Synechocystis sp. PCC 6803 cultures under reduced atmospheric pressures and enhanced CO2 levels. Int. J. Astrobiol. 4, 97-100.

    Article  CAS  Google Scholar 

  • Keys, B., Serra V., Saretzki, G. and von Zglinicki, T. (2004) Telomere shortening in human fibroblasts is not dependent upon the size of the telomeric-3′-overhang. Aging Cell 3, 103-114.

    Article  CAS  PubMed  Google Scholar 

  • Kirsop, B.E. (1999) Service collections: their functions, in: B. Kirsop and A. Doyle (eds.) Maintenance of Microorganisms. Academic Press Ltd., London, pp. 5-20.

    Google Scholar 

  • Kobabe S., Wagner D. and Pfeiffer, E-V. (2004) Characterisation of microbial community composi-tion of a Siberian tundra soil by fluorescence in situ hybridization. FEMS Microbiol. Ecol. 50, 13-23.

    Article  CAS  PubMed  Google Scholar 

  • Kuzmina, J. (2004) Progress Report on Cryopreservation at the University of Toronto Culture Collection of Algae and Cyanobacteria. University of Toronto, Toronto, Canada.

    Google Scholar 

  • Lane, N. (ed.) (2002) Oxygen the Molecule that Made the World. Oxford University Press, Oxford UK.

    Google Scholar 

  • Laybourn-Parry, J. (2002) Survival mechanisms in Antarctic lakes. Philos. Trans. R. Soc. Lond. B. 357, 863-869.

    Article  CAS  Google Scholar 

  • Lee, J.J. and Soldo, A.T. (eds.) (1992) Protocols in Protozoology. Society of Protozoologists, Lawrence, Kansas, USA.

    Google Scholar 

  • Leibo, S.P. (2004) The early history of gamete cryobiology, in: B. Fuller, N. Lane and E.E. Benson (eds.) Life in the Frozen State. CRC Press, London, UK, pp. 347-370.

    Google Scholar 

  • Leibo, S.P., Semple, M.E. and Kroetsch, T.G. (1994) In vitro fertilization of oocytes by 37-year-old cryopreserved bovine spermatozoa. Theriogenology 42, 1257-1262.

    Article  Google Scholar 

  • Liu, Y., Wang, X. and Liu, L (2004) Analysis of genetic variation in surviving apple shoots following cryopreservation by vitrification. Plant Sci. 166, 677-685.

    Article  CAS  Google Scholar 

  • Lorenz, M., Friedl, T. and Day, J.G. (2005) Perpetual Maintenance of Actively Metabolizing Microalgal Cultures, in: R.A. Andersen (ed.) Algal Culturing Techniques, Academic Press, New York, pp. 145-155.

    Chapter  Google Scholar 

  • Lovelock, J.E. (1953) The mechanism of the cryoprotective effect of glycerol against haemolysis by freezing and thawing. Biochim. Biophys. Acta 11, 28-36.

    Article  CAS  PubMed  Google Scholar 

  • , J. (2003) Sbirka autotrofnich organismu AV CR (Collection of autotrophic organisms of the AS CR), Ziva 3, 36-37.

    Google Scholar 

  • Mazur, P. (2004) Principles of cryobiology, in: B. Fuller, N. Lane and E.E. Benson (eds.) Life in the Frozen State. CRC Press, London, UK, pp. 3-66.

    Google Scholar 

  • McCormick, P.V. and Cairns, J. (1994) Algae as indicators of environmental change. J. Appl. Phycol. 6,509-526.

    Article  Google Scholar 

  • McLellan, M.R., Cowling, A.J., Turner, M.F. and Day, J.G. (1991) Maintenance of algae and proto-zoa, in: B. Kirsop and A. Doyle (eds.) Maintenance of Microorganisms. Academic Press Ltd., London, pp. 183-208.

    Google Scholar 

  • Meryman, H.T. and Williams, R.J. (1985) Basic principles of freezing injury to plant cells: natural tol-erance and approaches to cryopreservation, in: K.K. Kartha (ed) Cryopreservation of plant cells and organs. CRC Press Inc. Boca Raton, Florida, USA, pp. 14-47.

    Google Scholar 

  • Mileikowsky, C., Cucinotta, F.A., Wilson, J.W., Gladman, B., Horneck, G., Lindegren, L., Melosh, J., Rickman, H., Valtonen, M. and Zheng, J.Q. (2000) Natural transfer of viable microbes in space 1. From Mars to Earth and Earth to Mars. Icarus 145, 391-427.

    Article  CAS  PubMed  Google Scholar 

  • Morris, G.J. (1978) Cryopreservation of 250 strains of Chlorococcales by the method of two step cool-ing. Br. Phycol. J. 13, 15-24.

    Article  Google Scholar 

  • Müller, J., Friedl, T., Hepperle, D., Lorenz, M. and Day, J.G. (2005) Distinction of isolates among multiple strains of Chlorella vulgaris (Chlorophyta, Trebouxiophyceae) and Testing Conspecificity with Amplified Fragment Length Polymorphism and ITS RDNA sequences. J. Phycol. 41, 1236-1247.

    Article  CAS  Google Scholar 

  • Murthy, N.U.M., Kumar, P.P. and Sun, W.Q. (2003) Mechanisms of seed ageing under different stor-age conditions for Vigna radiate L. Wilczek: Lipid peroxidation, sugar hydrolysis and their relationship to glass transition state. J. Exp. Bot. 54, 1057-1067.

    Article  CAS  PubMed  Google Scholar 

  • Osorio, H., Laranjeriro, N., Santos, L.M.A. and Santos, M.F. (2004) First attempts at cryopreserva-tion of ACOI strains and use of image analysis to assess viability. Nova Hedwigia 79, 227-236.

    Article  Google Scholar 

  • Polge, C., Smith, A.U. and Parkes, A.S. (1949) Revival of spermatozoa after vitrification and dehy-dration at low temperatures. Nature 164, 666.

    Article  CAS  PubMed  Google Scholar 

  • Ponder, M., Vishnivetskaya, T., McGrath, J. and Tiedje, J. (2004) Microbial life in permafrost: extended times in extreme conditions, in: B. Fuller, N. Lane and E.E. Benson (eds.) Life in the Frozen State. CRC Press, London, UK, pp. 151-169.

    Google Scholar 

  • Rhodes, L., Smith, J., Tervit, R., Roberts, R., Adamson, J., Adams, S. and Decker, M. (2006) Cryopreservation of economically valuable marine micro-algae in the classes of Bacillariophyceae, Chlorophyceae, Cyano phyceae, Haptophyceae, Prasinophyceae, and Rhodophyceae. Cryobiology 52, 152-156.

    Article  CAS  PubMed  Google Scholar 

  • Rippka, R., Iteman, I., Coursin, T., Comte, K., Singer, A., Araoz, R., Laurent, T., Herdman, M. and Tandeau de Marsac, N. (2002) Recent progress in the Pasteur culture collection of cyanobacte-ria, in: Abstracts of Culture Collections of Algae: increasing accessibility and exploring Algal Biodiversity. 2-6 September 2002, Sammlung von Algenkulturen (SAG), Göttingen University, Germany.

    Google Scholar 

  • Rosing, M.T. (2005) Thermodynamics of life on the planetary scale. Int. J. Astrobiol. 4, 9-11.

    Article  CAS  Google Scholar 

  • Rothschild, L.J. and Mancinelli, R.L. (2001) Life in extreme environments. Nature 409, 1092-1101.

    Article  CAS  PubMed  Google Scholar 

  • Smith, L.C., MacDonald, G.M., Velchiko, A.A., Beilman, D.W., Borisova, O.K., Frey, K.E., Kremenetski, K.V. and Sheng, Y. (2004) Siberian peatlands a net carbon sink and global methane sources since the early halocene. Science 308, 353-356.

    Article  CAS  Google Scholar 

  • Soina, V.S., Mulyukin, A.L., Demkina, E.V., Vorobyova, E.A. and El-Registan, G.I. (2004) The struc-ture of resting bacterial populations in soil and subsoil permafrost. Astrobiology 4, 345-358.

    Article  PubMed  Google Scholar 

  • Stacey, G.N. and Day, J.G. (2006) Long-term ex situ conservation of biological resources and the role of biological resource centres, in: J.G. Day and G.N. Stacey (eds.) Cryopreservation and Freezedrying Protocols. Humana Press, Totowa, NJ, USA.

    Google Scholar 

  • Vishnivetskaya, T., Kathariou, S., McGrath, J., Gilichinsky, D. and Tiedje, J.M. (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4,165-173.

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskaya, T.A., Spirina, E.V., Shatilovich, A.V., Erokhina, L.G., Vorobyova, E.A. and Gilichinsky, D.A. (2003) The resistance of viable permafrost algae to simulated environmental stresses: implications for astrobiology. Int. J. Astrobiol. 2, 171-177.

    Article  Google Scholar 

  • Volk, G.M. and Walters, C. (2006) Plant vitrification solution 2 lowers water content and alters freez-ing behaviour in shoot tips during cryoprotection. Cryobiology 52, 48-61.

    Article  CAS  PubMed  Google Scholar 

  • Vorobyova, E., Soina, V., Gorlenko, M., Minkovskaya, N., Zalinova, N., Mamukelashvili, A., Gilichinsky, D., Rivkina, E. and Vishnivetskaya, T. (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol. Rev. 20, 277-290.

    CAS  Google Scholar 

  • Wainwright, M., Wickramasinghe, N.C., Narlikar, J.V., Rajaratnam, P. and Perkins, J. (2004) Confirmation of the presence of viable but non-culturable bacteria in the stratosphere. Int. J. Astrobiol. 3, 13-15.

    Article  Google Scholar 

  • Wallis, M.K. and Wickramasinghe, N.C. (2004) Interstellar transfer of planetary microbiota. Mon. Not. R. Astron. Soc. 348, 52-61.

    Article  Google Scholar 

  • Walters, C. (2004) Temperature dependency of molecular mobility in preserved seeds. Biophys. J. 86, 1253-1258.

    Article  CAS  PubMed  Google Scholar 

  • Walters, C., Wheeler, L. and Stanwood, P.C. (2004) Longevity of cryogenically stored seeds. Cryobiology 48, 229-244.

    Article  PubMed  Google Scholar 

  • Watanabe, M.M., Shimizu, A. and Satake, K. (1992) NIES-Microbial Culture Collection at the National Institute of Environmental Studies: cryopreservation and database of culture strains of microalgae, in: M.M. Watanabe (ed.) Proceedings of Symposium on Culture Collection of Algae. NIES, Tsukuba, Japan, pp. 33-41.

    Google Scholar 

  • Watanabe, M.M., Nozaki, H., Kasai, H., Sano, S., Kato, N., Omori, Y. and Hohara, S. (2005) Threatened states of the Charales in the Lakes of Japan, in: F. Kasai, K. Kaya and M.M. Watanabe (eds) Culture Collections and Environmental Research. Tokai University Press, Tokyo, Japan, pp. 217-236.

    Google Scholar 

  • Wickramasinghe, C. (2004) The Universe as a cryogenic habitat for microbial life. Cryobiology 48, 113-125.

    Article  PubMed  Google Scholar 

  • Wiessner, W., Schnepf, E. and Starr, R.C. (eds.) (1995) Algae, Environment and Human Affairs, Biopress Ltd., Bristol, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Benson, E., Harding, K., Day, J.G. (2007). Algae at Extreme Low Temperatures. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_19

Download citation

Publish with us

Policies and ethics