Skip to main content

Cold Tolerance in Cyanobacteria and Life in the Cryosphere

  • Chapter
Book cover Algae and Cyanobacteria in Extreme Environments

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 11))

Cyanobacteria are commonly thought of as microbial phototrophs that are characteristic of warm water environments such as hot springs (Steunou et al., 2006), stratified lakes during summer (Vazquez et al., 2005) and tropical oceans (Johnson et al., 2006). It is less widely known that many cyanobacterial taxa achieve their greatest ecological success at the opposite thermal extreme, in polar and alpine environments. One of the first discoveries of the prolific growth of cyanobacteria in the cryosphere (the ensemble of cold environments containing snow and ice) was by the Swedish-Finnish explorer Adolf Erik Nordenskiöld. In his expedition across the Greenland Ice Cap in 1870 his team discovered black sediment that he called ‘cryoconite’, cold rock dust collecting in melt holes (Leslie, 1879). On closer inspection they observed that this material was composed of not only inorganic sediments but also black-pigmented cyanobacteria, now known to be mostly the heterocystous species Calothrix parietina (Gerdel and Drouet, 1960). They concluded that because of its dark colouration, this cyanobacteria and its bound sediment absorbs radiation and hastens melting of the ice, a process more recently documented on glaciers (Takeuchi et al., 2001) and ice shelves in the Canadian High Arctic (Mueller and Vincent, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belzile, C., Vincent, W.F., Gibson, J.A.E. and Van Hove, P. (2001) Bio-optical characteristics of the snow, ice and water column of a perennially ice-covered lake in the high Arctic. Can. J. Fish. Aquat. Sci. 58: 2405-2418.

    Article  Google Scholar 

  • Böhm, G.A, Pfeiderer, W., Böger, P. and Scherer, S. (1995) Structure of a novel oligosaccharide-mycosporine-amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune. J. Biol. Chem. 270: 8536-8539.

    Article  PubMed  Google Scholar 

  • Bonilla, S., Villeneuve, V. and Vincent, W.F (2005) Benthic and planktonic algal communities in a high arctic lake: pigment structure and contrasting responses to nutrient enrichment. J. Phycol. 41: 1120-1130.

    Article  CAS  Google Scholar 

  • Chintalapati, S., Kiran, M.D. and Shivaji, S. (2004) Role of membrane lipid fatty acids in cold adap-tation. Cell. Mol. Biol. 50: 631-642.

    CAS  PubMed  Google Scholar 

  • Christner, B.C., Kvitko, B.H. II and Reeve, J.N. (2003) Molecular identification of bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7: 177-183.

    CAS  PubMed  Google Scholar 

  • Cockell, C.S. and Knowland, J. (1999) Ultraviolet radiation screening compounds. Biol. Rev. Camb. Philos. Soc. 74: 311-345.

    Article  CAS  PubMed  Google Scholar 

  • Cockell, C.S. and Stokes, M.D. (2004) Widespread colonization by polar hypoliths. Nature 431: 414.

    Article  CAS  PubMed  Google Scholar 

  • Corsetti, F.A., Olcott, A.N. and Bakermans, C. (2006) The biotic response to Neoproterozoic snow-ball earth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232: 114-130.

    Article  Google Scholar 

  • de los Ríos, A., Ascaso, C., Wierzchos, J., Fernández-Valiente, E. and Quesada, A. (2004) Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. Appl. Environ. Microbiol. 70: 569-580.

    Article  CAS  Google Scholar 

  • Elster, J., Svoboda, J., Komárek, J. and Marvan, P. (1997) Algal and cyanoprocaryote communities in a glacial stream, Sverdrup Pass. 79°N, Central Ellesmere, Canada. Arch. Hydrobiol. Algol.Stud. 85: 57-93.

    Google Scholar 

  • Fernández-Valiente, E., Camacho, A., Cochera, C., Rico, E., Vincent, W.F. and Quesada, A. (2007) Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microb. Ecol. 59: 377-385.

    Google Scholar 

  • Fuller, B.J. (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Letters 25: 375-388.

    CAS  PubMed  Google Scholar 

  • Garcia-Pichel, F. and Castenholz, R.W. (1991) Characterization and biological implications of scy-tonemin, a cyanobacterial sheath pigment. J. Phycol. 27: 395-409.

    Article  CAS  Google Scholar 

  • Garcia-Pichel, F. and Castenholz, R. (1993) Occurrence of UV absorbing mycosporine-like com-pounds among cyanobacterial isolates and an estimate of their screening ability. Appl. Environ. Microbiol. 59: 163-169.

    CAS  PubMed  Google Scholar 

  • Gerdel, R.W. and Drouet, F. (1960) The cyanobacteria of the Thule area, Greenland. Trans. Am. Microsc. Soc. 79: 256-272.

    Article  Google Scholar 

  • Hawes, I. and Schwarz, A-M. (1999) Photosynthesis in an extreme shade environment: benthic microbial mats from Lake Hoare, a permanently ice-covered Antarctic lake. J. Phycol. 35: 448-459.

    Article  CAS  Google Scholar 

  • Hawes, I. and Schwarz, A-M. (2001) Absorption and utilization of irradiance by cyanobacterial mats in two ice-covered Antarctic lakes with contrasting light climates. J. Phycol. 37: 5-15.

    Article  CAS  Google Scholar 

  • Hirschberg, J. and Chamovitz, D. (1994) Carotenoids in cyanobacteria. In: D.A. Bryant (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 559-579.

    Google Scholar 

  • Hoffman, P.F. and Schrag, D.P. (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14: 129-155. doi: 10.1046/j.

    Article  CAS  Google Scholar 

  • Howard-Williams, C., Pridmore, R.D., Downes, M.T. and Vincent, W.F. (1989) Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice Shelf. Antarctica. Antarct. Sci. 1: 125-131.

    Google Scholar 

  • Johnson, Z.I., Zinser, E.R., Coe, A., McNulty, N.P., Malcolm, E., Woodward, S. and Chisholm, S.W, (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311: 1737-1740.

    Article  CAS  PubMed  Google Scholar 

  • Joshua, S., Bailey, S., Mann, N.H. and Mullineaux, C.W. (2005) Involvement of phycobilisome diffu-sion in energy quenching in cyanobacteria. Plant Physiol. 138: 1577-1585.

    Article  CAS  PubMed  Google Scholar 

  • Jungblut, A.D., Hawes, I., Mountfort, D., Hitzfeld, B., Dietrich, D.R., Burns, B.P. and Neilan, B.A. (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ. Microbiol. 7: 519-529.

    CAS  Google Scholar 

  • Leslie, A., (1879) The Arctic Voyages of Adolf Erik Nordenskiöld. MacMillan and Co., London, UK, 447 pp.

    Google Scholar 

  • Mackay, M.A., Norton, R.S. and Borowitzka, L.J. (1984) Organic osmoregulatory solutes in cyanobacteria. J. Gen. Microbiol. 130: 2177-2191.

    CAS  Google Scholar 

  • McKnight, D.M., Niyogi, D.K., Alger, A.S., Bomblies, A., Conovitz, P.A. and Tate, C.M. (1999) Dry Valley streams in Antarctica: ecosystems waiting for water. Bioscience 49: 985-995.

    Article  Google Scholar 

  • Melezhik, V.A., (2006). Multiple causes of Ea rth’s earliest global glaciation. Terra Nova 18: 130-137.

    Article  CAS  Google Scholar 

  • Morgan-Kiss, R.M., Priscu, J.C., Pocock, T., Gudynaite-Savitch, L. and Huner, N.P.A (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environ-ments. Microbiol. Mol. Biol. Rev. 70: 222-252.

    Article  CAS  PubMed  Google Scholar 

  • Mueller, D. and Pollard, W.H. (2004) Gradient analysis of cryoconite ecosystems from two polar gla-ciers. Polar Biol. 27: 66-74.

    Article  Google Scholar 

  • Mueller, D.R. and Vincent, W.F. (2006) Microbial habitat dynamics and ablation control on the Ward Hunt Ice Shelf. Hydrological Processes 20: 857-876.

    Article  CAS  Google Scholar 

  • Mueller, D.R., Vincent, W.F., Bonilla, S. and Laurion, I. (2005) Extremophiles, extremotrophs and broad-band pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol. Ecol. 53: 73-87.

    CAS  Google Scholar 

  • Mullineaux, C.W. and Emlyn-Jones, D. (2005) State transitions: an example of acclimation to low-light stress. J. Exp. Bot. 56: 389-393.

    Article  CAS  PubMed  Google Scholar 

  • Nadeau, T.L. and Castenholz, R.W. (2000) Characterization of psychrophilic oscillatorians (cyanobacteria) from antarctic meltwater ponds. J. Phycol. 36: 914-923.

    Article  Google Scholar 

  • Nadeau, T.L., Howard-Williams, C. and Castenholz, R.W. (1999) Effects of solar UV and visible irra-diance on photosynthesis and vertical migration of Oscillatoria sp (cyanobacteria) in an Antarctic microbial mat. Aquat. Microb. Ecol. 20: 231-243.

    Article  Google Scholar 

  • Olcott, A.N., Sessions, A.L., Corsetti, F.A., Kaufman, A.J. and de Oliviera, T.F. (2005) Biomarker evi-dence for photosynthesis during Neoproterozoic glaciation. Science 310: 471-474.

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou, G.C. and Murata, N. (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth. Res. 44: 243-252.

    Article  CAS  Google Scholar 

  • Porazinska, D.L., Fountain, A.G., Nylen, T.H., Tranter, M., Virginia, R.A. and Wall, D.H. (2004) The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arct. Antarct. Alp. Res. 36: 84-91.

    Article  Google Scholar 

  • Powell, L.M., Bowman, J.P., Skerratt, J.H., Franzmann, P.D. and Burton, H.R. (2005) Ecology of a novel Synechococcus clade occurring in dense populations in saline Antarctic lakes. Mar. Ecol. Prog. Ser. 291: 65-80.

    Article  CAS  Google Scholar 

  • Proteau, P.J., Gerwick, W.H., Garcia-Pichel, F. and Castenholz, R. (1993) The structure of scytonemin: an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49: 825-829.

    Article  CAS  PubMed  Google Scholar 

  • Quesada, A., Vincent, W.F. and Lean, D.R.S. (1999) Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbiol. Ecol. 28: 315-323.

    CAS  Google Scholar 

  • Rae, R., and Vincent, W.F. (1998) Effects of temperature and UV radiation on microbial food web structure: potential responses to global change. Freshw. Biol. 40: 1-12.

    Article  Google Scholar 

  • Rae, R., Howard-Williams, C., Hawes, I. and Vincent, W.F. (2000) Temperature-dependence of pho-tosynthetic recovery from solar damage in Antarctic phytoplankton. In: W. Davison, C. Howard-Williams and P.A. Broady (eds.), Antarctic Ecosystems: Models for Wider Ecological Understanding. The Caxton Press, Christchurch, New Zealand, pp. 183-189.

    Google Scholar 

  • Rautio, M., and Vincent, W.F. (2006) Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshw. Biol. 51: 1038-1052.

    Article  CAS  Google Scholar 

  • Raymond, J.A., and Fritsen, C.H. (2000) Ice-active substances associated with Antarctic freshwater and terrestrial photosynthetic organisms. Antarct. Sci. 12: 418-424.

    Article  Google Scholar 

  • Roos, J.C., and Vincent, W.F. (1998) Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J. Phycol. 34: 118-125.

    Article  Google Scholar 

  • Sabbe, K., Hodgson, D.A., Verleyen, E., Taton, A., Wilmotte, A., Vanhoutte, K. and Vyverman, W. (2004) Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshw.. Biol. 49: 296-319.

    Article  Google Scholar 

  • Schmidt, S., Moskall, W., de Mora, S.J.D., Howard-Williams, C., and Vincent, W.F. (1991) Limnological properties of Antarctic ponds during winter freezing. Antarct. Sci. 3: 379-388.

    Article  Google Scholar 

  • Singh, S.M., Elster, J. (2007) Cyanobacteria in antarctic lake environments: A mini-review in: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht. (the volume) pp. xxx-yyy.

    Google Scholar 

  • Smith, M.C., Bowman, J.P., Scott, F.J., and Line, M.A. (2000) Sublithic bacteria associated with Antarctic quartz stones. Antarct. Sci. 12: 177-184.

    Google Scholar 

  • Sommaruga, R., and Garcia-Pichel, F. (1999) UV-absorbing mycosporine-like compounds in plank-tonic and benthic organisms from a high-mountain lake. Arch. Hydrobiol. 144: 255-269.

    CAS  Google Scholar 

  • Steunou, A-S., Bhaya, D., Bateson, M.M., Melendrez, M.C., Ward, D.M., Brecht, E., Peters, J.W., Kühl, M. and Grossman, A.R. (2006) In situ analysis of nitrogen fixation and metabolic switch-ing in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proc. Natl. Acad. Sci. U.S.A. 103: 2398-2403.

    Article  CAS  PubMed  Google Scholar 

  • Stibal, M., Sˇabacká, M. and Kaštovská, K. (2006) Microbial communities on glacier surfaces in Svalbard: Impact of physical and chemical properties on abundance and structure of cyano-bacteria and algae. Microb. Ecol. 52: 644-654.

    Article  PubMed  Google Scholar 

  • Suzuki, I., Kanasaki, Y., Mikami, K., Kahnehisa, M. and Murata, N. (2001) Cold regulated genes under the control of hik33 in Synechocystis. Mol. Microbiol. 40: 235-245.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, N., Kohshima, S.S., Goto-Azuma, K. and Koerner, R.M. (2001) Biological characteristics of dark colored material (cryoconite) on Canadian Arctic glaciers (Devon and Penny ice caps). Mem. Natl. Inst. Polar Res. Special Issue 54: 495-505.

    Google Scholar 

  • Tamaru, Y., Takani, Y., Yoshida, T. and Sakamoto, T. (2005) Crucial role of extracellular polysac-charides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71: 7327-7333.

    Article  CAS  PubMed  Google Scholar 

  • Tang, E.P.Y, Tremblay, R. and Vincent, W.F. (1997) Cyanobacteria dominance of polar freshwa-ter ecosystems: are high latitude mat-formers adapted to low temperature? J. Phycol. 33: 171-181.

    Article  Google Scholar 

  • Taton, A., Grubisic, S., Balthasart, P., Hodgson, D.A., Laybourn-Parry, J. and Wilmotte, A. (2006) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol. Ecol. 57: 272-289.

    CAS  Google Scholar 

  • Thomas, D.N., and Dieckmann, G.S. (2002) Antarctic sea ice - a habitat for extremophiles. Science 295: 641-644.

    Article  CAS  PubMed  Google Scholar 

  • Tranter, M., Fountain, A.G., Fritsen, C.H., Lyons, W.B., Priscu, J.C., Statham, P.J. and Welch, K.A., (2004) Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrological Processes 18: 379-387.

    Article  Google Scholar 

  • Van Hove, P., Belzile, C., Gibson, J.A.E. and Vincent, W.F. (2006) Coupled landscape-lake evolution in the Canadian High Arctic. Can. J. Earth Sci. 43: 533-546.

    Article  CAS  Google Scholar 

  • Vazquez, G., Jimenez, S., Favila, M.E. and Martinez, A. (2005) Seasonal dynamics of the phyto-plankton community and cyanobacterial dominance in a eutrophic crater lake in Los Tuxtlas, Mexico. Ecoscience 12: 485-493.

    Article  Google Scholar 

  • Vézina, S. and Vincent, W.F. (1997) Arctic cyanobacteria and limnological properties of their envi-ronment: Bylot Island, Northwest Territories, Canada. (73°N, 80°W). Polar Biol. 17: 523-534.

    Article  Google Scholar 

  • Vincent, W.F. (1988) Microbial Ecosystems of Antarctica. Cambridge University Press, Cambridge, UK, 304 pp.

    Google Scholar 

  • Vincent, W.F. (2000) Cyanobacterial dominance in the Polar Regions. In: B.A. Whitton and M. Potts (eds.), The Ecology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 321-340.

    Google Scholar 

  • Vincent, W.F. and Quesada A. (1993) Cyanobacterial responses to UV radiation: implications for antarctic microbial ecosystems. Antarct. Res. Ser. 62: 111-124.

    Google Scholar 

  • Vincent, W.F., Howard-Williams, C. and Broady P.A. (1993) Microbial communities and processes in Antarctic flowing waters, In: I. Friedmann (ed.), Antarctic Microbiology. Wiley-Liss, New York, pp. 543-569.

    Google Scholar 

  • Vincent, W.F., Mueller, D.R. and Bonilla, S. (2004a) Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology 48: 103-112.

    Article  PubMed  Google Scholar 

  • Vincent, W.F., Mueller, D.R., Van Hove, P. and Howard-Willams, C. (2004b) Glacial periods on early Earth and implications for the evolution of life In: J. Seckbach (ed.), Origins: Genesis, Evolution and Diversity of Life. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 481-501.

    Google Scholar 

  • Vinebrooke, R.D. and Leavitt, P.R. (1996) Effects of ultraviolet radiation on periphyton in an alpine lake. Limnol. Oceanogr. 41: 1035-1040.

    Article  CAS  Google Scholar 

  • Vishnivetskaya, T., Erokhina, L.G., Spirina, E.V., Shatilovich, A.V., Vorobyova, E.A., Tsapin, A.I. and Gilichinisky D.A. (2005) Viable phototrophs: cyanobacteria and green algae from the per-mafrost darkness. In: J.D. Castello and S.O. Rogers (eds.), Life in Ancient Ice. Princeton University Press, Princeton, USA, pp.140-158.

    Google Scholar 

  • Vopel, K. and Hawes I. (2006) Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnol. Oceanogr. 51: 1801-1812.

    Google Scholar 

  • Waleron, M., Waleron, K., Vincent, W.F. and Wilmotte, A. (2007) Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean. FEMS Microbiol. Ecol. 59: 356-365.

    CAS  Google Scholar 

  • Wharton, R.A., Parker, B.C. and Simmons, G.M. (1983) Distribution, species composition and mor-phology of algal mats in Antarctic dry valley lakes. Phycologia 22: 355-365.

    Google Scholar 

  • Wharton, R.A., Vinyard, W.C., Parker, B.C., Simmons, G.M. and Seaburg, K.G. (1981) Algae in cry-oconite holes on Canada Glacier in Southern Victoria land, Antarctica. Phycologia 20: 208-211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Vincent, W.F. (2007). Cold Tolerance in Cyanobacteria and Life in the Cryosphere. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_15

Download citation

Publish with us

Policies and ethics