Skip to main content

Soil and Freshwater Micro-Algae as a Food Source for Invertebrates in Extreme Environments

  • Chapter
Algae and Cyanobacteria in Extreme Environments

Microscopic algae and cyanobacteria (the term micro-algae will be used in the text to cover both eukaryotic algae and prokaryotic cyanobacteria) are able to colonize almost all of the biotopes on earth. They are the most important primary producers in both sea and freshwater ecosystems. Their importance in terrestrial ecosystems increases further in extreme habitats because of the decreased competition of higher plants. For example, in the Antarctic, the role of algae as primary producers increases from the maritime to the continental areas where harsher conditions limit the development of mosses (Wynn-Williams, 1985). Algal mats and biological soil crusts are found worldwide in various extreme environments (Broady, 1979; Vincent, 1988; Cohen and Rosenberg, 1989; Belnap and Lange, 2001). As primary producers, micro-algae represent the bottom of the food webs, and serve as an important food source for a wide spectrum of animals.

The aim of this chapter is to summarize recent knowledge about the role of terrestrial and freshwater micro-algae as a food source for invertebrates, with particular attention to extreme habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, A.A. (1998). Algal defense, grazers, and their interactions in aquatic trophic cascades. Acta Oecol. 19: 331-337.

    Google Scholar 

  • Arens, W. (1994). Striking convergence in the mouthpart evolution of stream-living algae grazers. J. Zool. Syst. Evol. Res. 32: 319-343.

    Google Scholar 

  • Balayla, D.J. and Moss, B. (2004). Relative importance of grazing on algae by plant-associated and open-water microcrustacea (Cladocera). Arch. Hydrobiol. 161: 199-224.

    Google Scholar 

  • Bauer, T. (1979). Die Feuchtigkeit als steuernder Faktor für das Kletterverhalten von Collembolen. Pedobiologia 19: 165-175.

    Google Scholar 

  • Belnap, J. (2001). Microbes and microfauna associated with biological soil crusts, in: J. Belnap and O.L. Lange (eds.), Biological Soil Crusts: Structure, Function, and Management. Ecological Studies 150. Springer-Verlag, Berlin, pp. 167-174.

    Google Scholar 

  • Belnap, J. and Lange, O.L. (eds.) (2001). Biological Soil Crusts: Structure, Function, and Management. Ecological Studies 150, Springer-Verlag, Berlin.

    Google Scholar 

  • Benzie, J.A.H. (2005). The genus Daphnia (including Daphniopsis), Backhazs, Lajdej.

    Google Scholar 

  • Berg, M.G. (1995). Larval food and feeding behaviour, in: P.D. Armitage, P.S. Cranston and L.C.V. Pinder (eds.), The Chironomidae. Chapman and Hall, London, pp. 139-168.

    Google Scholar 

  • Berg, M.P., Stoffer, M. and van den Heuvel H.H. (2004). Feeding guilds in Collembola based on diges-tive enzymes. Pedobiologia 48: 589-601.

    Google Scholar 

  • Block, W. (1984). Terrestrial microbiology, invertebrates and ecosystems, in: R.M. Laws (ed.), Antarctic Ecology, vol.1. Academic Press, London, pp. 163-236.

    Google Scholar 

  • Bongers, T. and Bongers, M. (1998). Functional diversity of nematodes. Appl. Soil Ecol. 10: 239-251.

    Google Scholar 

  • Broady, P.A. (1979). Feeding studies on the collembolan Cryptopygus antarcticus Willem at Signy Island, South Orkney Islands. Br. Antarct. Surv. Bull. 48: 37-46.

    Google Scholar 

  • Broady, P.A. (1989). Survey of algae and other terrestrial biota at Edwards VII Peninsula, Marie Byrd Land. Antarct. Sci. 1: 215-224.

    Google Scholar 

  • Brunner, U. and Honegger, R. (1985). Chemicaland ultrastructural studies on the distribution of sporopollenin-like biopolymers in six genera of lichen phycobionts. Can. J. Bot. 63: 2221-2230.

    CAS  Google Scholar 

  • Burczyk, J. (1987). Biogenetic relationships between ketocarotenoids and sporopollenins in green algae. Phytochemistry 28: 113-119.

    Google Scholar 

  • Burn, A.J. (1981). Feeding and growth in the Antarctic collembolan Cryptopygus antarcticus. Oikos 36: 59-64.

    Google Scholar 

  • Burn, A.J. (1982). Effects of temperature on the feeding activity of Cryptopygus antarcticus. C.N.F.R.A. 51: 209-217.

    Google Scholar 

  • Burn, A.J. (1984). Life cycle strategies in two Antarctic Collembola. Oecologia (Berlin) 64: 223-229.

    Google Scholar 

  • Burn, A.J. (1986). Feeding rates of the cryptostigmatid mite Alaskozetes antarcticus (Michael). Br. Antarct. Surv. Bull. 71: 11-17.

    Google Scholar 

  • Cohen, Y. and Rosenberg, E. (eds.) (1989). Microbial Mats. Physiological Ecology of Benthic Microbial Communities, American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Coûteaux, M.M. and Darbyshire, J.F. (1998). Functional diversity amongst soil protozoa. Appl. Soil Ecol. 10: 229-237.

    Google Scholar 

  • Davey, M.C. and Clarke, K.J. (1992). Fine structure of a terrestrial cyanobacterial mat from Antarctica. J. Phycol. 28: 199-202.

    Google Scholar 

  • Davidson, M.M. and Broady, P.A. (1996). Analysis of gut contents of Gomphiocephalus hodgsoni Carpenter (Collembola: Hypogastruridae) at Cape Geology, Antarctica. Polar Biol. 16: 463-467.

    Google Scholar 

  • Degans, H. and De Meester, L. (2002). Top-down control of natural phyto- and bacterioplankton prey communities by Daphnia magna and by the natural zooplankton community of the hyper-trophic Lake Blankaart. Hydrobiologia 479: 39-49.

    Google Scholar 

  • De Goede, R.G.M., Verschoor, B.C. and Georgieva, S.S. (1993). Nematode distribution, trophic struc-ture and biomass in a primary succession of blown-out areas in a drift sand landscape. Fund. Appl. Nemat. 16: 525-538.

    Google Scholar 

  • Delwiche, C.F., Graham, L.E. and Thomson, N. (1989). Lignin-like compounds and sporopollenin in Coleochaete, an algal model for land plant ancestry. Science 245: 399-401.

    CAS  PubMed  Google Scholar 

  • Elhottová, D., Frouz, J., Krisˇtu°fek, V., Lukešová,A., Nováková, A. and Tříska, J. (2002). Potential sources of polyunsaturated fatty acids for saprophagous soil invertebrates. in: K. Tajovsky, V. Balík and V. Pižl (eds.), Studies on Soil Fauna in Central Europe, Proceedings of the 6th Central European Workshop on Soil Zoology. Institute of Soil Biology AS CR, Cˇeské Budějovice, pp. 31-37.

    Google Scholar 

  • Fitzsimons, J.M. (1971). On the food habits of certain Antarctic arthropods from coastal Victoria Land and from adjacent island. Pac. Insects Monogr. 25: 121-125.

    Google Scholar 

  • Foote, B.A. (1995). Biology of shore flies. Ann. Rev. Entomol. 40: 417-442.

    CAS  Google Scholar 

  • Freckman, D.W. and Virginia, R.A. (1997). Low-diversity Antarctic soil nematode communities: dis-tribution and response to disturbance. Ecology 78: 363-369.

    Google Scholar 

  • Frouz, J. and Lukešová, A. (1995). Food preference of two species of terrestrial chironomids (Diptera, Chironomidae). Dipterologica bohemoslovaca 7: 41-46.

    Google Scholar 

  • Frouz, J., Ali, A. and Lobinske, R.J. (2004a). Laboratory evaluation of six algal species for larval nutritional suitability of the pestiferous midge Glyptotendipes paripes (Diptera: Chironomidae). J. Econom. Entomol. 97: 1884-1890.

    Google Scholar 

  • Frouz, J., Ali, A. and Lobinske, R.J. (2004b). Algal food selection and digestion by larvae of the pes-tiferous chironomid Chironomus crassicaudatus under laboratory conditions. J. Am. Mosq. Contr. Assoc. 20: 458-461.

    Google Scholar 

  • Good, B.H. and Chapman, R.L. (1978). TheUltrastructure of Phycopeltis(Chroolepidaceae; Chlorophyta). I. Cell walls and sporopollenin. Amer. J. Bot. 65(1): 27-33.

    CAS  Google Scholar 

  • Gulati, R.D. and De Mott, W.R. (1997). The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshw. Biol. 38: 753-768.

    Google Scholar 

  • Heal, O.W. and Felton, M.J. (1970). Soil amoebae: their food and their reaction to microflora exu-dates, in: A. Watson (ed.), Animal Populations in Relation to Their Food Resources. Oxford, Edinburgh, pp. 145-162.

    Google Scholar 

  • Hessen, D.O., Van Donk, E. and Andersen, T. (1995). Growth responses, P-uptake and loss of flagella in Chlamydomonas reinhardtii exposed to UV-B. J. Plankton Res. 17: 17-27.

    Google Scholar 

  • Hietala, J., Maataa, C.L. and Aalls, M. (1997). Sensitivity of Daphnia to toxic cyanobacteria. Effects of genotype and temperature. Freshw. Biol. 37: 299-306.

    Google Scholar 

  • Hodkinson, I.D., Coulson, S., Webb, N.R., Block, W., Strathdee, A.T. and Bale, J.S. (1994). Feeding studies on Onychiurus arcticus (Tullberg) (Collembola: Onychiuridae) on West Spitsbergen. Polar Biol. 14: 17-19.

    Google Scholar 

  • Hoeppli, R. and Chu, H.J. (1932). Free living nematodes in hot spring in China and Formosa. Honkong Nat. Suppl. 1: 5-32.

    Google Scholar 

  • Honneger, R. and Brunner, V. (1981). Sporopollenin in cell walls of Coccomyxa and Myrmecia phy-cobionts of various lichens: an ultrastructure and chemical investigation. Canad. J. Bot. 59: 2713-2734.

    Google Scholar 

  • Hubert, J. and Lukešová, A. (2001). Feeding of the panphytophagous oribatid mite Scheloribates lae-vigatus (Acari: Oribatida) on cyanobacterial and algal diets in laboratory experiments. Appl. Soil Ecol. 16: 77-83.

    Google Scholar 

  • Kaler, V.L., Bulko, O.P., Reshetnikov, V.N. and Galkovskaia, G.A. (2000). Changes in the mor-phostructure of Scenedesmus acutus and culture growth rate induced by the exudate of primary consumer Daphnia magna. Russ. J. Plant Physiol. 47: 698-705.

    CAS  Google Scholar 

  • Kiviranta, J. and Abdel-Hameed, A. (1994). Toxicity of the blue-green alga Oscillatoria aghardii to the mosquito Aedes aegypti and the shrimp Artemia salina. World J. Microbiol. Biotechnol. 10: 517-520.

    CAS  Google Scholar 

  • Konig, J. and Peveling, E. (1984). Cell walls of the phycobionts Trebouxia and Pseudotrebouxia con-stituents and their localization. Lichenologist 16: 129-144.

    Google Scholar 

  • Kozlovskaja, L.S., Domracheva, L.I. and Shtina, E.A. (1975). Relationships between soil inverte-brates and soil algae. In: Problemy pochvennoi zoologii. Materialy V. Vses. soveshch., Vilnijus, pp. 180-181 [in Russian].

    Google Scholar 

  • Kozlovskaja, L.S. and Shtina, E.A. (1987). Relationships between diplopods and soil algae, in: B.R. Striganova (ed.), Pochvennaia fauna i pochvennoe plodorodie. Tr. 9-ogo mezhdunar. kolok. po pochvennoi zool. Nauka, Moskva, pp. 68-71.

    Google Scholar 

  • ˚fek, V., Lukešová, A. and Nováková, A. (1997). Soil microorganisms as source of food for enchytraeids (Annelida, Enchytraeidae), in: O. Dˇugová (ed.), Life in Soil, Czechoslovak Society for Microbiology, Institute of Microbiology SAS, Bratislava, pp. 41-42 [in Czech].

    Google Scholar 

  • Kumar, R. and Rao, T.R. (1999). Effect of algal food on animal prey consumption rates in the omniv-orous copepod, Mesocyclops thermocyclopoides. Int. Rev. Hydrobiol. 84: 419-426.

    Google Scholar 

  • Kurmayer, R. and Juttner, F. (1999). Strategies for the co-existence of zooplankton with the toxic cyanobacterium Planktothrix rubescens in Lake Zurich. J. Plankton Res. 2: 659-683.

    Google Scholar 

  • Laminger, H. (1980). Bodenprotozoologie. Microbios 1: 1-142.

    Google Scholar 

  • Lampert, W. (1987). Laboratory studies on zooplankton cyanobacteria interactions. New Zealand J. Mar. Freshw. Res. 21: 483-490.

    Google Scholar 

  • Laureillard, J., Largeau, C., Waeghemaker, F. and Casadevall, E. (1986). Biosynthesis of the resistant polymer in the alga Botryococcus braunii. Studies on the possible direct precursors. J. Nat. Prod. 49: 794-799.

    CAS  Google Scholar 

  • Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Rogers, P., Ineson, P., Heal, O.W. and Dhillion, S. (1997). Soil function in changing world: the role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33: 159-193.

    CAS  Google Scholar 

  • Levine, S.N, Borchardt, M.A., Braner, M. and Shambaugh, A.D. (1999). The impact of zooplankton grazing on phytoplankton species composition and biomass in Lake Champlain (USA-Canada). J. Great Lakes Res. 25: 61-77.

    Article  Google Scholar 

  • Lewis, W.M., Hamilton, S.K., Rodriguez, M.A., Saunders, J.F. and Lasi, M.A. (2001). Food web analysis of the Orinoco floodplain based on production estimates and stable isotope data. J. North Am. Benth. Soc. 20: 241-254.

    Google Scholar 

  • Littlewood, C.F. (1969). A surface sterilization technique used in feeding algae to Oribatei, in: G.O. Evans (ed.), Proc. 2nd. Intern. Congr. Acarology, Sutton Bonington, Hung. Acad. Sci., Budapest, pp. 53-56.

    Google Scholar 

  • Lukešová, A. (1989). Ecology of algae in soils of different successional age, PhD dissertation, Institute of Soil Biology, Cˇeské Budějovice [in Czech].

    Google Scholar 

  • Lukešová, A. (2000). Methods of interaction studies between soil algae and invertebrates, in: ˚fek, D D. Elhottová, J. Frouz and V. Sˇustr (eds.), Interakce půdních mikroorganismů , ˚dní biologie AV CˇR, Cˇeské Budějovice, pp. 129-132 [in Czech].

    Google Scholar 

  • Lukešová, A. and Tajovský, K. (1999). Interactions between soil algae and saprophagous invertebrates (Diplopoda and Oniscidea), in: K.Tajovský and V. Pižl (eds.), Soil Zoology in Central Europe. Institute of Soil Biology AS CR, Cˇeské Budějovice, pp. 187-195.

    Google Scholar 

  • Lurling, M. and Van Donk, E. (2000). Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? Oikos 88: 111-118.

    Google Scholar 

  • Luxton, M. (1972). Studies on the oribatid mites of a Danish beech wood soil. Pedobiologia 12: 434-463.

    Google Scholar 

  • Mayeli, S.M., Nandini, S. and Sarma, S. (2004). The efficacy of Scenedesmus morphology as a defense mechanism against grazing by selected species of rotifers and cladocerans. Aquatic Ecol. 38: 515-524.

    Google Scholar 

  • Nekrasova, K.A. (1980). Trophic relationships of soil animals and algae (on collembolans as an exam-ple). In: Pochvennaia fauna i biologicheskaja aktivnostj, osushennykh rekultiviruemykh torfianikov, Nauka, Moskva, pp. 160-166 [in Russian].

    Google Scholar 

  • Nekrasova, K.A. (1987). Experiment in studies of relationships between soil algae and microphy-tophagous animals, in: B.R. Striganova (ed.), Pochvennaia fauna i pochvennoe plodorodie. Tr. 9-ogo mezhdunar. kolok. po pochvennoi zool. Nauka, Moskva, pp. 408-410 [in Russian].

    Google Scholar 

  • Nekrasova, K.A. and Aleksandrova, I.V. (1982). Participation of collembolans and earthworms in the transformation of algal organic matter. Pochvovedenie 10: 65-71

    Google Scholar 

  • Nekrasova, K.A. and Domracheva, L.I. (1972). Importance of the investigation of soil invertebrates in the quantification of soil algae, in: Metody izucheniia i prakticheskogo ispol’zovaniia pochven-nych vodoroslei. Tr. Kirov. s.-cg. in-ta. Kirov, pp. 175-181 [in Russian].

    Google Scholar 

  • Nekrasova, K.A., Kozlovskaja, L.S., Domracheva, L.I. and Shtina, E.A. (1976). The influence of invertebrates on the development of algae. Pedobiologia 16: 286-297.

    Google Scholar 

  • Newsham, K.K., Rolf, J., Pearce, D.A. and Strachan, R.J. (2004). Differing preferences of Antarctic soil nematodes for microbial prey. Eur. J. Soil Biol. 40: 1-8.

    Google Scholar 

  • Nielsen, C.O. (1962). Carbohydrases in soil and litter invertebrates. Oikos 13: 200-215.

    Google Scholar 

  • Nogrady, T., Wallace, R.L. and Snell, T.W. (1993). Rotifera, Vol.1: Biology, Ecology and Systematics, SBP Academic Publishers, The Hague.

    Google Scholar 

  • Nováková, A., Elhottová, D., Krištůfek, V., Lukešová, A., Hill, P., Kováč, L’., Mock, A. and L’uptáčik, P. (2005). Feeding sources of invertebrates in the Ardovská cave and Domica cave sys-tems - preliminary results, in: K. Tajovský, J. Schlaghamerský and V. Pižl (eds.), Contributions to Soil Zoology in Central Europe I, Proceedings of the 7th Central European Workshop on Soil Zoology, Institute of Soil Biology AS CR, Cˇeské Budějovice, pp. 107-112.

    Google Scholar 

  • Nunez, F.S. and Crawford, C.S. (1976). Digestive enzymes of the desert millipede Orthoporus ornatus (Girard) (Diplopoda: Spirostreptidae). Comp. Biochem. Physiol. 55A: 141-145.

    Google Scholar 

  • Peters, R.H. and De Bernardi, R. (1987). Daphnia, Consilio Nationale dele Ricerche, Verbania Pallanza.

    Google Scholar 

  • Peterson, C.G., Vormittag, K.A. and Valett, H.M. (1998). Ingestion and digestion of epilithic algae by larval insects in a heavily grazed montane stream. Freshw. Biol. 40: 607-623.

    Google Scholar 

  • Pierce, T.G. (1978). Gut content of some lumbricid earthworms. Pedobiologia 18: 154-157.

    Google Scholar 

  • Pires, L.M.D., Ibelings, B.W., Brehm, M. and Van Donk, E. (2005). Comparing grazing on lake ses-ton by Dreissena and Daphnia: Lessons for biomanipulation. Microb. Ecol. 50: 242-252.

    Google Scholar 

  • Porazinska, D.L, Fountain, A.G, Nylen, T.H, Tranter, M., Virginia, R.A. and Wall, D.H. (2004). The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arct. Antarct. Alpine. Res. 36: 84-91.

    Google Scholar 

  • Porcella, R. and Walne, P.L. (1980). Microarchitecture and envelope development in Dismorphococcus globosus (Phacotaceae, Chlorophyceae). J. Phycol. 11: 186-202.

    Google Scholar 

  • Puel, F., Largeau, C. and Giraud, G. (1987). Occurrence of a resistant biopolymer in the outer cell walls of the parasitic alga Prototheca wickerhamii (Chlorococcales) ultrastructural and chemical studies. J. Phycol. 23: 649-656.

    Article  CAS  Google Scholar 

  • Randall, D., Burggren, W. and French, K. (1997). Eckert Animal Physiology: Mechanisms and Adaptations - 4th edition, Freeman and Company, New York.

    Google Scholar 

  • Ricci, C. and Balsamo, M. (2000). The biology and ecology of lotic rotifers and gastrotrichs. Freshw. Biol. 44: 15-28.

    Google Scholar 

  • Richard, G. W. and Rodger, M. (1973). Ecology of Yellowstone thermal effluent systems: Intersects of blue-green algae, grazing flies (Paracoenia, Ephydridae) and water mites (Partnuniella, Hydrachnellae). Hydrobiologia 41: 251-271.

    Google Scholar 

  • Roser, D.J., Melick, D.R., Ling, H.U. and Seppelt, R.D. (1992). Polyol and sugar content of terres-trial plants from continental Antarctica. Antarct. Sci. 4: 413-420.

    Google Scholar 

  • Rosi-Marshall, E.J. and Wallace, J.B. (2002). Invertebrate food webs along a stream resource gradient. Freshw. Biol. 47: 129-141.

    Google Scholar 

  • Salmon, J.T. (1962). A new species and redescriptions of Collembola from Antarctica. Pac. Insects 4: 887-894.

    Google Scholar 

  • Schaefer, M. (1990). The soil fauna of a beech forest on limestone: Trophic structures and energy budget. Oecologia 82: 129-136.

    Google Scholar 

  • Scheu, S. and Folger, M. (2004). Single and mixed diets in Collembola: effects on reproduction and stable isotope fractionation. Funct. Ecol. 18: 94-102.

    Google Scholar 

  • Schwabe, C.H. (1973). Vulkaninsei Surtsey: ein neues Okosystem entsteht. Umsch. Wiss.u. Techn. 73: 23-34.

    Google Scholar 

  • Seniczak, A. (1998). Preliminary studies on the influence of food on the development and morphol-ogy of Archegozetes longisetosus Aoki (Acari: Oribatida) in the laboratory conditions. Zesz. Nauk Akad. Tovarysztwa Roln. Bydgoszczy, Ochrona Srodowska 2: 175-180.

    Google Scholar 

  • Shachak, M. and Steinberger, Y. (1980). An algae-desert snail food chain: energy flow and soil turnover. Oekologia (Berl.) 146: 412-411.

    Google Scholar 

  • Shtina, E.A. (1984). Soil algae as a component of a biogeocenosis, in: E.N. Mishustin (ed.), Pochvennyje organismy kak komponent biogeotsenoza. Nauka, Moskva, pp. 66-81 [in Russian].

    Google Scholar 

  • Shtina, E.A., Kozlovskaja, L.S. and Nekrasova, K.A. (1981). About interactions of soil-dwelling oligochets and algae. Ekologiia 1: 55-60.

    Google Scholar 

  • Siepel, H. and Ruiter-Dijkman De, E.M. (1993). Feeding guilds of oribatid mites based on their car-bohydrate activities. Soil Biol. Biochem. 25: 1491-1497.

    Google Scholar 

  • Sinclair, B.J., Klok, C.J., Scott, M.B., Terblanche, J.S. and Chown, S.L. (2003). Diurnal variation in supercooling points of three species of Collembola from Cape Hallet, Antarctica. J. Insect Physiol. 49: 1049-1061.

    CAS  Google Scholar 

  • Small, R.W. (1987). A review of the prey of predatory soil nematodes. Pedobiologia 30: 179-206.

    Google Scholar 

  • Smith, K.G.V. (1989). An Introduction to the Immature Stages of British Flies. Handbooks for the identification of British insects 10, Royal Entomological Society of London, London.

    Google Scholar 

  • Smrž, J. and Cˇatská, V. (1987). Food selection of the field population of Tyrophagus putrescentiae (Schrank) (Acari: Acarida). Y. Angew. Entomol. 104: 329-335.

    Google Scholar 

  • Smrž, J. and Norton, R.A. (2004). Food selection and internal processing in Archegozetes longisetosus (Acari: Oribatida). Pedobiologia 48: 111-120.

    Google Scholar 

  • Sohlenius, B., Bostrom, S. and Jonsson, K.I. (2004). Occurrence of nematodes, tardigrades and rotifers on ice-free areas in East Antarctica. Pedobiologia 48: 395-408.

    Google Scholar 

  • Spaull, V.W. (1973). Distribution of nematode feeding groups at Signy Island, South Orkney Islands, with an estimate of their biomass and oxygen consumption. Br. Antarct. Surv. Bull. 37: 21-32.

    Google Scholar 

  • Sterner, R.W., Hagemeier, D.D., Smith, W.L. and Smith, R.F. (1993). Phytoplankton nutrient limita-tion and food quality for Daphnia. Limnol. Oceanogr. 38: 858-871.

    Article  Google Scholar 

  • Sterner, R.W., Hessen, D.O. (1994). Algal nutrient limitation and nutrition of aquatic herbivores. Annual review of Ecology and Systematics 25: 1-29.

    Google Scholar 

  • Sustr, V. (2001). Research on ecophysiology ofmillipedes in ISB: Mini-review and perspectives. Myriapodologica Czecho-Slovaca 1: 85-88.

    Google Scholar 

  • sˇustr, V., Elhottová, D., Krisˇtu°fek, V., Lukesˇová, A., Nováková, A., Tajovsky, K., Trˇiska, J. (2005). Ecophysiology of the cave isopod Mesoniscus graniger (Frivaldszky, 1865) (Crustacea: Isopoda). European J. Soil Biology 41: 69-75.

    Google Scholar 

  • Takeuchi, A., Kohshima, S. and Seko, K. (2001). TI Structure, formation, and darkening process of albedo- reducing material (cryoconite) on a Himalayan glacier: A granular algal mat growing on the glacier. Arct. Antarct. Alpine Res. 33: 115-122.

    Google Scholar 

  • Tarman, K. (1968). Anatomy, histology and of Oribatid gut and their digestion. Biol. vestn. Ljubljana 16: 67-76.

    Google Scholar 

  • Teoh, M.L., Chu, W.L., Marchant, H. and Ohang, S.M. (2004). Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J. Appl. Phycol. 16: 421-430.

    CAS  Google Scholar 

  • Tetík, K., NeCˇas, J., Sulek, J. and Olejníček, J. (1994). Resistance of zygospores and selective diges-tion of non-zygospore cells of the alga Chlamydomonas geitleri (Chlorophyta) by mosquito larvae. Arch. Hydrobiol. 130: 485-497.

    Google Scholar 

  • Tilbrook, P.J. (1977). Energy flow through a population of the collembolan Cryptopygus antarcticus, in: G.A. Llano (ed.), Adaptations within Antarctic Ecosystems, Proc. Third SCAR Symp. Antarc. Biol., Gulf Publ. Co., Texas, pp. 935-946.

    Google Scholar 

  • Van Donk, E. and Hessen, D.O. (1993). Grazing resistance in nutrient stressed phytoplankton. Oecologia 93: 508-511.

    Google Scholar 

  • Van Donk, E. and Hessen, D.O. (1995). Reduced digestibility of UV-stressed and nutrient-limited algae by Daphnia magna. Hydrobiologia 307: 147-151.

    Google Scholar 

  • Van Donk, E. and Hessen, D.O. (1996). Loss of flagella in the green alga Chlamydomonas reinhardtii due to in situ UV-exposure. Scientia Marina 60 (Supl.1): 107-112.

    Google Scholar 

  • Vincent, W.F. (1988). Microbial Ecosystems of Antarctica, Cambridge University Press, Cambridge.

    Google Scholar 

  • Vincent, W.F. and James, M.R. (1996). Biodiversity in extreme aquatic environments: lakes, ponds and streams of the Ross Sea sector, Antarctica. Biodivers. Conserv. 5: 1451-1471.

    Google Scholar 

  • Weisse, T. (2002). The significance of inter- and intraspecific variation in bacterivorous and herbivo-rous protists. Antonie van Leeuwenhoek 81: 327-341.

    PubMed  Google Scholar 

  • Winterbourn, M.J. (1969). The distribution of algae and insects in hot spring thermal gradients at Waimangu, New Zealand. N. Z. J. Mar. Freshw. Res. 3: 459-465.

    Article  Google Scholar 

  • Wood, F.H. (1973a). Nematode feeding relationships. Feeding relationship of soil dwelling nematodes. Soil Biol. Biochem. 5: 593-601.

    Google Scholar 

  • Wood, F.H. (1973b). Biology of Aporcelaimellus sp. (Nematoda: Aporcelaimidae). Nematologica 19: 529-537.

    Article  Google Scholar 

  • Worland, M.R. and Lukešová, A. (2000). The effect of feeding on specific soil algae on the cold-har-diness of two Antarctic micro-arthropods (Alaskozetes antarcticus and Cryptopygus antarcticus). Polar Biol. 23: 766-774.

    Google Scholar 

  • Worland, M.R. and Lukešová, A. (2001). The application of differential scanning calorimetry and ice nucleation spectrometry to ecophysiological studies of algae, in: J. Elster, J. Seckbach, W. Vincent and O. Lhotsky (eds.), Proceedings of international conference, Algae and extreme environments - ecology and physiology, Nova Hedwigia (123), 571-583.

    Google Scholar 

  • Wynn-Williams, D.D. (1985). The biota of a lateral moraine and hinterland of the Blue Glacier, South Victoria Land, Antarctica. Br. Antarct. Surv. Bull. 66: 1-5.

    Google Scholar 

  • Xiong, F., Komenda, J., Kopecky, J. and Nedbal, L. (1997). Strategies of ultraviolet-B protection in microscopic algae. Physiol. Plant. 100: 378-388.

    CAS  Google Scholar 

  • Yeates, G.W., Bongers, T., de Goede, R.G.M., Freckman, D.W. and Georgieva, S.S. (1993). Feeding habits in soil nematode families and genera-an outline for soil ecologists. J. Nematol. 25: 315-331.

    CAS  PubMed  Google Scholar 

  • , V., Kalina, T. and Sulek, J. (1985). Notes on the sexual reproduction of Chlamydomonas geitleri Ettl. Arch. Protistenk. 130: 343-353.

    Google Scholar 

  • Zettel, J., Zettel, U., Suter, C., Streich S. and Egger, B. (2002). Winter feeding behaviour of Ceratophysella sigillata (Collembola: Hypogastruridae) and the significance of eversible vesicles for resource utilisation. Pedobiologia 46: 404-413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lukešová, A., Frouz, J. (2007). Soil and Freshwater Micro-Algae as a Food Source for Invertebrates in Extreme Environments. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_14

Download citation

Publish with us

Policies and ethics