Skip to main content

Hydrochemical Key to the Genesis of Calcareous Nonlaminated and Laminated Cyanobacterial Microbialites

  • Chapter
Algae and Cyanobacteria in Extreme Environments

Theoretical geochemical considerations (Kempe and Degens, 1985) and field work at sites of active growth of in situ calcified cyanobacterial mats and biofilms (e.g., Kempe et al., 1991; Kempe and Kazmierczak, 1993; Kazmierczak and Kempe, 2006) convinced us that in the past the ocean must have been more alkaline than at present and that it was of higher CaCO3 supersaturation (SICalcite > 0.8) (Kempe and Kazmierczak, 1990a, 1994; Kazmierczak et al., 2004). Two processes contributed to the higher alkalinity: (1) the slowly declining high primary alkalinity established in the Hadean ocean by binding large amounts of degassed and cometary CO2 through silicate weathering as CO2- 3 and HCO- 3 in ocean waters (“Soda Ocean”) and (2) the effect of the export of excess alkalinity from sulfate reduction processes in stagnant marine basins (“Alkalinity Pump”) (Kempe, 1990; Kempe and Kazmierczak, 1994). The latter alkalinity source started to be effective only after enough sulfate became available in the ocean (probably during the last 1.0–0.8 Ga – for evaluation of sulfate level in the Precambrian ocean see e.g., Buick, 1992; Grotzinger and Kasting, 1993; Eriksson et al., 2005). It could be the single most important factor for short-term modifications of Phanerozoic ocean chemistry. Sudden, in geological terms, export of alkalinity from overturning anaerobic basins could cause high pH and Ca2+ stress upon the marine biota (Kempe and Kazmierczak, 1994; Brennan et al. 2004; Kazmierczak and Kempe, 2004b), and is associated with negative δ13C excursions in carbonate sequences at the Precambrian/Cambrian transition (e.g., Knoll et al., 1986; Magaritz, 1989; Magaritz et al., 1991), where biocalcification started in several phyla almost simultaneously (e.g., Lowenstam and Margulis, 1980; Lowenstam and Weiner, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken, J.D. (1967) Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwest Alberta. J. Sediment. Petrol. 37, 1163-1178.

    CAS  Google Scholar 

  • Altermann, W., Kazmierczak, J., Oren, A., and Wright D.W. (2006) Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology 4, 147-166.

    Article  CAS  Google Scholar 

  • Arp, G., Reimer, A.., and Reitner J. (2003) Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. J. Sediment. Res. 73, 105-127.

    Article  CAS  Google Scholar 

  • Bathurst, R.G.C. (1975) Carbonate Sediments and their Diagenesis (2nd ed), Elsevier, Amsterdam.

    Google Scholar 

  • Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H., Spear, J.R., Przekop, K.M., and Visscher, P.T. (2006) Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sediment. Geol. 185, 131-145.

    Article  CAS  Google Scholar 

  • Benzerara, K., Menguy, N., López-García, P., Tae-Hyun, Yoon., Kazmierczak, J., Tyliszczak, T., Guyot, F., and Brown, E. Jr. (2006) Nanoscale detection of organic signatures in carbonate microbialites. Proc. Natl. Acad. Sci. USA 103, 9440-9445.

    Article  CAS  PubMed  Google Scholar 

  • Brennan, S.T., Lowenstein, T.K., and Horita, J. (2004) Seawater chemistry and the advent of biocal-cification. Geology 32, 473-476.

    Article  CAS  Google Scholar 

  • Buick, R. (1992) The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulfate-deficient Archean lakes. Science 255, 74-77.

    Article  CAS  PubMed  Google Scholar 

  • Burne, R.V. and Moore, L.S. (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2, 241-254.

    Article  Google Scholar 

  • Donaldson, J.A. (1976) Paleoecology of Conophyton and associated stromatolites in the Precambrian Dismal Lakes and Rae Groups, Canada, in: M.R. Walter (ed.), Stromatolites, Elsevier, Amsterdam, pp. 523-534.

    Chapter  Google Scholar 

  • Eriksson, K.A., Simpson, E.L., Master, S., and Henry, G. (2005) Neoarchaean (c. 2.58 Ga) halite casts:implications for palaeoceanic chemistry. J. Geol. Soc., London 162, 789-799.

    Article  Google Scholar 

  • Fairchild, I.J. (1991) Origins of carbonate in Neoproterozoic stromatolites and identification of mod-ern analogues. Precambrian Res. 53, 281-299.

    Article  CAS  Google Scholar 

  • Flügel, E. (2004) Microfacies of Carbonate Rocks. Springer, Berlin.

    Google Scholar 

  • Galloway, J.J. and St. Jean (1961) Ordovician Stromatoporoidea of North America. Bull. Amer. Paleont. 43, 5-102.

    Google Scholar 

  • Garrels, R.M. and Mackenzie, F.T. (1967) Origin of the chemical composition of some springs and lakes. Equilibrium Concepts in Natural Water System. Amer. Chem. Soc. Adv. Chemistry 67, 227-242.

    Google Scholar 

  • Gebelein, C.D. and Hoffman, P. (1973) Algal origin of dolomite laminations in stromatolitic lime-stone. J. Sediment. Petrol. 43, 603-613.

    Google Scholar 

  • Gessner, F. (1957) Van Gölü - Zur Limnologie des groβen Soda-Sees in Ostanatolien (Türkei). Arch. Hydrobiol. 53, 1-22.

    Google Scholar 

  • Ginsburg, R.N. (1991) Controversies about stromatolites: vices and virtues, in: D.W. Müller, J.A. McKenzie, and Weissert, H. (eds.), Controversies in Modern Geology, Academic Press, London, pp. 25-36.

    Google Scholar 

  • Goyet, C., Bradshaw, A.L., and Brewer, P.G. (1991) The carbonate system in the Black Sea. Deep Sea Res. 38, 1949-1068.

    Google Scholar 

  • Grotzinger, J.P and Kasting, J.F. (1993) New constraints on Precambrian ocean chemistry. J. Geol. 101,235-243.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, H.J. (1973) Stromatolites: Characteristics and utility. Earth Sci. Rev. 9, 339-373.

    Google Scholar 

  • Hovland, M. and Judd, A.G. (1988) Seabed Pockmarks and Seepages, Graham & Trotman, London.

    Google Scholar 

  • Kazmierczak, J. and Kempe, S. (1990) Modern cyanobacterial analogs of Paleozoic stromatoporoids. Science 250, 1244-1248.

    Article  Google Scholar 

  • Kazmierczak, J. and Kempe, S. (1992) Recent cyanobacterial counterparts of Paleozoic Wetheredella and related problematic fossils. Palaios 7, 294-304.

    Article  Google Scholar 

  • Kazmierczak, J. and Kempe, S. (2004a) Microbialite formation in seawater of increased alkalinity, SatondaCrater Lake, Indonesia - Discussion. J. Sediment. Res. 74, 314-317.

    Article  CAS  Google Scholar 

  • Kazmierczak, J. and Kempe, S. (2004b) Calcium build-up in the Precambrian sea - A major promoter in the evolution of eukaryotic life, in: J. Seckbach (ed.) Origins - Genesis, Evolution and Diversity of Life, Kluwer Academic Publishers, Dordrecht, pp. 331-345.

    Google Scholar 

  • Kazmierczak, J. and Kempe, S. (2006) Genuine modern analogues of Precambrian stromatolites from caldera lakes of Niuafo‘ou, Tonga. Naturwissenschaften 93, 119-126.

    Article  CAS  Google Scholar 

  • Kazmierczak, J., Coleman, M.L., Gruszczynski, M., and Kempe, S. (1996) Cyanobacterial key to the genesis of micritic and peloidal limestones in ancient seas. Acta Palaeont. Polonica 41, 319-338.

    Google Scholar 

  • Kazmierczak J., Kempe S., and Altermann, W. (2004) Microbial origin of Precambrian carbonates: Lessons from modern analogues, in: P.G. Eriksson, W. Altermann, D.R. Nelson, W.U. Mueller, and O. Catuneanu (eds), The Precambrian Earth: Tempos and Events, Elsevier, Amsterdam, pp. 545-564.

    Google Scholar 

  • Kempe, S. (1977) Hydrographie, Warvenchronologie und organische Geochemie des Van Sees, Osttürkei. Mitt. Geol. Paläont. Inst. Univ. Hamburg 47, 125-228.

    CAS  Google Scholar 

  • Kempe, S. (1990) Alkalinity: the link between anaerobic basins and shallow water carbonates? Naturwissenschaften 77, 426-427.

    Article  CAS  Google Scholar 

  • Kempe, S. and Degens, E.T. (1985) An early soda ocean? Chem. Geol. 53, 95-108.

    Article  CAS  Google Scholar 

  • Kempe, S. and Kazmierczak, J. (1990a) Calcium carbonate supersaturation and the formation of in situ calcified stromatolites, in: V.A. Ittekkot, S. Kempe, W. Michaelis, and A. Spitzy (eds.), Facets of Modern Biogeochemistry, Springer, Berlin, pp. 255-278.

    Google Scholar 

  • Kempe, S. and Kazmierczak, J. (1990b) Chemistry and stromatolites of the sea-linked Satonda Crater Lake,Indonesia: A recent model for the Precambrian sea? Chem. Geol. 81, 299-310.

    Article  CAS  Google Scholar 

  • Kempe, S. and Kazmierczak, J. (1993) Satonda Crater Lake, Indonesia: Hydrogeochemistry and bio-carbonates. Facies 28, 1-32.

    Article  Google Scholar 

  • Kempe, S. and Kazmierczak, J. (1994) The role of alkalinity in the evolution of ocean chemistry, organization of living systems and biocalcification processes, in: F. Doumenge (ed.), Past and Present Biomineralization Processes—Considerations about the Carbonate Cycle, IUCN-COE Workshop, Monaco, 1993. Bull. Inst. Oceanogr. Monaco no. sp. 13, 61-117.

    Google Scholar 

  • Kempe, S. and Pegler, K. (1991) Sinks and sources of CO2 in coastal seas: the North Sea. Tellus 43B, 224-235.

    CAS  Google Scholar 

  • Kempe, S. and Reimer, A. (1990) Lake Van: first nutrient results. Salinet 4, 31-33.

    Google Scholar 

  • Kempe, S., Kazmierczak, J., Landmann, G., Konuk, T., Reimer, A., and Lipp, A. (1991) Largest known microbialites discovered in Lake Van, Turkey. Nature 349, 605-608.

    Article  Google Scholar 

  • Kennard, J.M. and James, N.P. (1986) Thrombolites and stromatolites: two distinct types of microbial structures. Palaios 1, 492-503.

    Article  Google Scholar 

  • Keupp, H. (1977) Der Solnhofer Plattenkalk—ein Blaugrünalgen-Laminit. Paläont. Zschr. 51,102-116.

    Google Scholar 

  • Knoll, A.H., Hayes, J.M., Kaufman, A.J., Swett, K., and Lambert, I.B. (1986) Secular variation in car-bon isotope ratios from the Upper Proterozoic successions of Svalbard and East Greenland. Nature 321, 832-838.

    Article  CAS  PubMed  Google Scholar 

  • Komar, V.A., Raaben, M.E., Semikhatov, M.A. (1965) Konofitony rifeya SSSR i ikh stratigrafich-eskoye znacheniye. Trudy Geol. Inst. Akad. Nauk SSSR 131, 5-72 (in Russian).

    Google Scholar 

  • Krauskopf, K.B. 1979. Introduction to Geochemistry (2nd ed.), McGraw-Hill Book Co., New York.

    Google Scholar 

  • Krumbein, W.E. and Cohen, Y. (1977) Primary production, mat formation and lithification: Contribution of oxygenic and facultative anoxygenic cyanobacteria, in: E. Flügel (ed.), Fossil Algae: Recent Results and Development, Springer, Berlin, pp. 37-56.

    Google Scholar 

  • Kühl M., Fenchel T., and Kazmierczak J. (2003) Structure, function, and calcification potential of an artificial cyanobacterial mat, in: W.E. Krumbein, D. Paterson, and G.A. Zavarzin (eds.), Fossil and Recent Biofilms - A Natural History of Life on Earth, Kluwer Academic Publishers, Dordrecht, pp. 77-102.

    Google Scholar 

  • López-García P., Kazmierczak J., Benzerara K., Kempe S., Guyot F., and Moreira D. (2005) Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles 9, 263-274.

    Article  CAS  Google Scholar 

  • Lowenstam, H.A. and Margulis L. (1980) Evolutionary prerequisites for early Phanerozoic calcare-ous skeletons. BioSystems 12, 27-41.

    Article  CAS  PubMed  Google Scholar 

  • Lowenstam, H.A. and Weiner, S. (1989) On Biomineralization, Oxford University Press, Oxford.

    Google Scholar 

  • Ludwig, R., Al-Horani, F.A., de Beer, D., and Jonkers, H.M. (2005) Photosynthesis-controlled calci-fication in a hypersaline microbial mat. Limnol. Oceanogr. 50, 1836-1843.

    Article  CAS  Google Scholar 

  • Lyons, W.B., Long, D.T., Hines, M.E., Gaudette, H.E., and Armstrong, P.B. (1984) Calcification of cyanobacterial mats in Solar Lake, Sinai. Geology 12, 623-626.

    CAS  Google Scholar 

  • Magaritz, M. (1989) C minima follow extinction events: A clue to faunal radiation. Geology 17, 337-340.

    Article  CAS  Google Scholar 

  • Magaritz, M., Kirschvink, J., Latham, A.J., Zhuravlev, A.Yu., and Rozanov A.Yu. (1991) Precambrian/Cambrian boundary problem: Carbon isotope correlations for the Vendian and Tommotian time between Siberia and Morocco. Geology 19, 847-850.

    Article  CAS  Google Scholar 

  • Maslov, V. P. (1960) Stromatolity. Trudy Geol. Inst. Akad. Nauk SSSR 41, 3-188 (in Russian).

    Google Scholar 

  • Merz, M.U.E. (1992) The biology of carbonate precipitation by cyanobacteria. Facies 26, 81-102.

    Article  Google Scholar 

  • Merz-Preiβ, M. and Riding, R. (1999) Cyanobacterial tufa calcification in two freshwater streams: ambient environment chemical thresholds and biological processes. Sediment. Geol. 126, 103-124.

    Article  Google Scholar 

  • Milliman, J.D. (1993) Production and accumulation of calcium-carbonate in the ocean - budget of a nonsteady state. Global Biogeochem. Cycles 7, 927-957.

    Article  CAS  Google Scholar 

  • Parkhurst, D.L., Thorstenson, D.C., and Plummer, L.N. (1990) PHREEQE - a computer program for geochemical calculations. U.S. Geol. Surv. Wat. Res. Invest. Rep. 80-96, 1-197.

    Google Scholar 

  • Pegler, K. and Kempe, S. (1988) The carbonate system of the North Sea: determination of alkalinity and TCO2 and calculation of PCO2 and SICc (Spring 1986), in: S. Kempe, G. Liebezeit, V. Dethlefsen, and U. Harms (eds.), Biogeochemistry and Distribution of Suspended Matter in the North Sea and Implications to Fisheries Biology, Mitt. Geol.-Paläont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderband 65, 35-87.

    Google Scholar 

  • Pentecost, A. and Spiro, B. (1990) Stable carbon and oxygen isotope composition of calcites associ-ated with modern freshwater cyanobacteria and algae. Geomicrobiol. J. 8, 17-26.

    Article  CAS  Google Scholar 

  • Riding, R. (1991) Calcified cyanobacteria, in: R. Riding (ed.), Calcareous Algae and Stromatolites, Springer, Berlin, pp. 55-97.

    Google Scholar 

  • Riding, R. (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(Suppl. 1), 179-214.

    Article  CAS  Google Scholar 

  • Rippka, R., Waterbury, J.B., and Stanier, R.Y. (1981) Provisional generic assignments for cyanobac-teria in pure culture, in: M.P. Starr, H. Stolp, H.G. Trüper, A. Balows, and H.G. Schlegel (eds.), The Prokaryotes, I, 247-256, Springer, Berlin, pp. 247-256.

    Google Scholar 

  • Robbins, L.L. and Blackwelder, P.L. (1992) Biochemical and ultrastructural evidence for the origin of whitings: A biologically induced calcium carbonate precipitation mechanism. Geology 20,464-468.

    Article  CAS  Google Scholar 

  • Sakata, S., Hayes, J.M., McTaggart, A.R., Evans, R.A., Leckrone, K.L., and Togasaki, R.K. (1997) Carbon isotopic fractionation associated with lipid biosynthesis by a cyanobacterium: Relevance for interpretation of biomarker records. Geochim. Cosmochim. Acta 61, 5379-5389.

    Article  CAS  PubMed  Google Scholar 

  • Schulz, H.D. and Kölling, M. (1992) Grundlagen und Anwendungsmöglichkeiten hydrogeochemis-cher Modellprogramme. DVWK Schriften 100, 1-96.

    Google Scholar 

  • Semikhatov, M.A., Gebelein, C.D., Cloud, P., Awramik, S. M., and Benmore, W.C. (1979) Stromatolite morphogenesis - progress and problems. Canad. J. Earth Sci. 16, 992-1015.

    Google Scholar 

  • Skyring, G.W., Chambers, L.A., and Bauld, J. (1983) Sulfate reduction in sediments colonized by cyanobacteria, Spencer Gulf, South Australia. Austr. J. Marine Freshwater Res. 34, 359-374.

    Article  CAS  Google Scholar 

  • Straccia, F.G., Wilkinson, B.H., and Smith, G.R. (1990). Miocene lacustrine algal reefs - southwest-ern Snake River Plain, Idaho. Sediment. Geol. 67, 7-23.

    Article  Google Scholar 

  • Stumm, W. and Morgan, J.J. (1970) Aquatic Chemistry, Wiley-Intersciences, New York.

    Google Scholar 

  • Svensson, U. (1992). Die Lösung und Abscheidungskinetik natürlicher Calcitminerale in wässrigen CO2-Lösungen nahe dem Gleichgewicht, Dissertation, Fachber. Geowiss., Univ. Bremen, Selbstverl., 112 pp.

    Google Scholar 

  • Thompson, J.B. and Ferris, F.G. (1990) Cyanobacterial precipitation of gypsum, calcite, and magne-site from natural alkaline lake water. Geology 18, 995-998.

    Article  CAS  Google Scholar 

  • Tribovillard, N. (1998) Cyanobacterially generated peloids in laminated, organic matter-rich lime-stones: an unobtrusive presence. Terra Nova 10, 126-130.

    Google Scholar 

  • Ward, D.M., Beck, E., Revsbech, N.P., Sandbeck, K.A., and Winfrey, M.R. (1984) Decomposition of hot spring microbial mats, in: Y. Cohen, R.W. Castenholz, and H.O. Halvorson (eds.), Microbial Mats: Stromatolites, Alan R. Liss, New York, pp. 191-214.

    Google Scholar 

  • Zaihua, L., Svensson, U., Dreybrodt, W., Daoxian, Y., and Buhmann, D. (1995) Hydrodynamic con-trol of inorganic precipitation in Huanglong Ravine, China: field measurements and theoretical prediction of deposition rates. Geochim. Cosmochim. Acta 59, 3087-3097.

    Article  CAS  Google Scholar 

  • Zeebe, R.E. and Wolf-Gladrow, D.A. (2001) CO2 in Seawater: Equilibrium, Kinetics and Isotopes, Elsevier Oceanography Series, Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Kempe, S., Kazmierczak, J. (2007). Hydrochemical Key to the Genesis of Calcareous Nonlaminated and Laminated Cyanobacterial Microbialites. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_13

Download citation

Publish with us

Policies and ethics