Skip to main content

“Greener Shade of Ruthenium”: New Concepts of Activation, Immobilization, and Recovery of Ruthenium Catalysts For Green Olefin Metathesis

  • Conference paper
Metathesis Chemistry

Part of the book series: NATO Science Series ((NAII,volume 243))

The results described herewith demonstrate that the activity of ruthenium (Ru) metathesis catalysts can be enhanced by introduction of electron-withdrawing groups (EWGs) without detriment to catalysts stability. This principle can be used not only to increase the catalyst activity, but also to alter its physical–chemical properties, such as solubility in given medium or affinity to silica gel. An example of novel immobilisation strategy, based on this concept is presented. The ammonium-tagged Hoveyda-type catalysts can be successfully applied in aqueous media as well as in ionic liquids (IL). Substitution of a benzylidene fragment can be used not only to immobilize the organometallic complex in such media, but also to increase its catalytic activity by electronic activation. The high stability and good application profiles of such modified catalysts in conjunction with their facile removal from organic products can be expected to offer new opportunities in green applications of olefin metathesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. General reviews: (a) Schrock, R.R., Hoveyda, A.H., Angew. Chem. Int. Edit. 2003, 42:4592; (b) Trnka, T.M., Grubbs, R.H., Acc. Chem. Res. 2001, 34:18; (c) Fűrstner, A., Angew. Chem. Int. Edit. 2000, 39:3012; (d) Grubbs, R.H., Chang, S., Tetrahedron 1998, 54:4413; (e) Schuster, M., Blechert, S., Angew. Chem. Int. Edit. 1997, 36:2037; (f) Dragutan, V., Dragutan, I., Balaban, A.T., Platinum Met. Rev. 2001, 45:155.

    Google Scholar 

  2. Nicola, T., Brenner, M., Donsbach, K., Kreye, P., Org. Process Res. Dev. 2005, 9:513.

    Article  CAS  Google Scholar 

  3. (a) Conrad, J.C., Parnas, H.H., Snelgrove, J.L., Fogg, D.E., J. Am. Chem. Soc. 2005, 127:11882; (b) For example, in a crude untreated product of diethyl diallylmalonate RCM catalyzed by 5 mol % of Grubbs I-generation catalyst the theoretical amount of Ru is 90 mg per 5 mg of product (18,000 ppm). After filtration of the crude reaction mixture, the Ru level was reduced to 59.7 ± 0.50 mg per 5mg (12,000 ppm). Further purification of such crude metathesis products usually reduces ruthenium levels below 2000 ppm, see ibid, and McEleney, K., Allen, D.P., Holliday, A.E., Crudden, C.M, Org. Lett. 2006, 8:2663.

    Google Scholar 

  4. Another solution to this problem might be based on the immobilization of a metathesis catalysts in a separate liquid or solid phase. For recent reviews, see: (a) Hoveyda, A.H., Gillingham, D.G., Van Veldhuizen, J.J., Kataoka, O., Garber, S.B., Kingsbury, J.S., Harrity, J.P.A., Org. Biomol. Chem. 2004, 2:1; (b) Buchmeiser, R.M., New, J., Chem. 2004, 28:549. For related systems developed in our laboratories, see: (c) Grela, K., Mennecke, K., Kunz, U., Kirschning, A., Synlett 2005, 2948; (d) Grela, K., Tryznowki, M., Bieniek, M., Tetrahedron Lett. 2002, 43:6425.

    Google Scholar 

  5. Boehringer Ingelheim International GmbH, World Pat. WO 2004/ 089974 A1, 2004.

    Google Scholar 

  6. Paquette, L.A., Schloss, J.D., Efremov, I., Fabris, F., Gallou, F., Mendez-Andino, J., Yang, J., Org. Lett. 2000, 2:1259.

    Article  CAS  Google Scholar 

  7. Ahn, Y.M., Yang, K., Georg, G.I., Org. Lett. 2001, 3:1411.

    Article  CAS  Google Scholar 

  8. (a) Maynard, H., Grubbs, R.H., Tetrahedron Lett. 1999, 40:4137; (b) Westhus, M., Gonthier, E., Brohm, D., Breinbauer, R., Tetrahedron Lett. 2004, 45:3141.

    Google Scholar 

  9. Cho, J.H., Kim, B.M., Org. Lett. 2003, 5:531.

    Article  CAS  Google Scholar 

  10. For a technical data sheet on the application of QuadraPure resins, see: Avecia Pharmaceuticals, http://www.quadrapure.com

  11. Complex 7, introduced recently by our group, exhibits catalytic activity comparable to the parent Hoveyda-Grubbs carbene 4, but shows much higher affinity for silica gel when CH2Cl2 is used as eluent, which enables its efficient removal. See: Grela, K., Kim, M., Eur. J. Org. Chem. 2003, 963.

    Google Scholar 

  12. Michrowska, A., Gulajski, L., Grela, K., Chem. Commun. 2006, 841.

    Google Scholar 

  13. Reviews on polymer-bound reagents and catalysts: (a) Solodenko, W., Frenzel, T., Kirschning, A., in: Buchmeiser, M.R., (ed.), Polymeric Materials in Organic Synthesis and Catalysis, Wiley-VCH, Weinheim, 2003, pp. 201; (b) Clapham, B., Reger, T.S., Janda, K.D., Tetrahedron 2001, 57:4637-4662; (c) Baxendale, I.R., Storer, R.I., Ley, S.V., in: Buchmeiser, M.R., (ed.), Polymeric Materials in Organic Synthesis and Catalysis, Wiley-VCH, Weinheim, 2003, pp. 53; (d) Kirschning, A., Monenschein, H., Wittenberg, R., Angew. Chem., Int. Edit. 2001, 40:650; (e) Ley, S.V., Baxendale, I.R., Bream, R.N., Jackson, P.S., Leach, A.G., Longbottom, D.A., Nesi, M., Scott, J.S., Storer, R.I., Taylor, S.J., J. Chem. Soc., Perkin Trans. 2000, 1:3815; (f) Drewry, D.H., Coe, D.M., Poon, S., Med. Res. Rev. 1999, 19:97.

    Google Scholar 

  14. Reviews: (a) Kingsbury, J.S., Hoveyda, A.H., in: Buchmeiser, M.R., (ed.), Polymeric Materials in Organic Synthesis and Catalysis, Wiley-VCH, Weinheim, 2003, p. 467; (b) see [Ref. 4b] .

    Google Scholar 

  15. (a) Kingsbury, J.S., Harrity, J.P.A., Bonitatebus, P.J., Hoveyda, A.H., J. Am. Chem. Soc. 1999, 121:791; (b) Garber, S.B., Kingsbury, J.S., Gray, B.L., Hoveyda, A.H., J. Am. Chem. Soc. 2000, 122:8168.

    Google Scholar 

  16. (a) For a short review, see Hoveyda, A.H., Gillingham, D.G., Van Veldhuizen, J.J., Kataoka, O., Garber, S.B., Kingsbury, J.S., Harrity, J.P.A., Org. Biomol. Chem. 2004, 2:1.

    Google Scholar 

  17. For syntheses of supported variants of 3-4, see inter alia: (a) Kingsbury, J.S., Garber, S.B., Giftos, J.M., Gray, B.L., Okamoto, M.M., Farrer, R.A., Fourkas, J.T., Hoveyda, A.H., Angew. Chem., Int. Edit. 2001, 40:4251; (b) see [Ref. 4d] ; (c) Connon, S.J., Dunne, A.M., Blechert, S., Angew. Chem. Int. Edit. 2002, 41:3835; (d) Dowden, J., Savovic, J. Chem. Commun. 2001, 37; (e) Yao, Q., Angew. Chem., Int. Edit. 2000, 39:3896; (f) Yao, Q., Zhang, Y., Angew. Chem., Int. Edit. 2003, 42:3395; (g) Connon, S.J., Blechert, S., Bioorg. Med. Chem. Lett. 2002, 12:1873; (h) Yao, Q., Zhang, Y., J. Am. Chem. Soc. 2004, 12:74; (i) Yao, Q., Motta, A.R., Tetrahedron Lett. 2004, 45:2447; (j) Yang, L., Mayr, M., Wurst, K., Buchmeiser M.R., Chem. Eur. J. 2004, 10:5761; (k) Krause, J.O., Nuyken, O., Wurst, K., Buchmeiser, M.R., Chem. Eur. J. 2004, 10:777; (l) Krause, J.O., Zarka, M.T., Anders, U., Weberskirch, R., Nuyken, O., Buchmeiser, M.R., Angew. Chem. Int. Edit. 2003, 42:5965; (m) Audic, N., Clavier, H., Mauduit, M., Guillemin, J.C., J. Am. Chem. Soc. 2003, 125:9248; (n) Clavier, H., Audic, N., Mauduit, M., Guillemin, J.C.G., Chem. Commun. 2004, 282.

    Google Scholar 

  18. (a) Kirschning, A., Jas, G., Top. Curr. Chem. 2004, 242:209. (b) Jas, G., Kirschning, A., Chem. Eur. J. 2003, 9:5708.(c) Fletcher, P.D.I., Haswell, S.J., Pombo-Villar, E., Warrington, B.H., Watts, P., Wong, S.Y., Zhang, X., Tetrahedron 2002, 58:4735; (d) Kirschning, A., Solodenko, W., Mennecke, K., Chem. Eur. J. 2006, 12:5972.

    Google Scholar 

  19. Kunz, U., Leue, S., Stuhlmann, F., Sourkouni-Argirusi, G., Wen, H., Jas, G., Kirschning, A., Eur. J. Org. Chem. 2004, 3601.

    Google Scholar 

  20. Grela, K., Harutyunyan, S., Michrowska, A., Angew. Chem. Int. Edit. 2002, 41:4038.

    Article  CAS  Google Scholar 

  21. Michrowska, A., Bujok, R., Harutyunyan, S., Sashuk, V., Dolgonos, G., Grela, K., J. Am. Chem. Soc.1. 2004, 126:9318.

    Article  CAS  Google Scholar 

  22. Grela, K., Harutyunyan, S., Michrowska, A., in: Roberts, S.M., Whittall, J., Mather, P., McCormack, P., (eds), Catalysts for Fine Chemical Synthesis, Vol. 3, Wiley Interscience, New York, 2004, Chap. 9.1, pp. 169.

    Google Scholar 

  23. Bujok, R., Bieniek, M., Masnyk, M., Michrowska, A., Sarosiek, A., Stępowska, H., Arlt, D., Grela, K., J. Org. Chem. 2004, 69:6894.

    Article  CAS  Google Scholar 

  24. (-)-Securinine: Honda, T., Namiki, H., Kaneda, K., Mizutani, H., Org. Lett. 2004, 6:87.

    Google Scholar 

  25. (+)-Viroallosecurinine: Honda, T., Namiki, H., Watanabe, M., Mizutani, H., Tetrahedron Lett. 2004, 45:5211.

    Google Scholar 

  26. An artificial photosynthesis model: Ostrowski, S., Mikus, A., Mol. Diversity 2003, 6:315.

    Google Scholar 

  27. For a recent application of 6a in synthesis of hepatitis C antiviral agent, BILN 2061, see: WO 2004/089974 A1, Boehringer Ingelheim International GmbH, 2004.

    Google Scholar 

  28. Nicola, T., Brenner, M., Donsbach, K., Kreye, P., Org. Proc. Res. Devel. 2005, 9:513.

    Article  CAS  Google Scholar 

  29. A sample of 8 was stored in air (+4°C) for 3 years and after that time TLC analysis showed only minute decomposition. Simply passing out this sample through a Pasteur pipette with silica gel afforded 80% of the regenerated catalyst in analytically pure form.

    Google Scholar 

  30. Addition of HBF4(0.025 equiv) to the mixture of 8 (0.025 equiv) and 10 (1 equiv) in CH2Cl2 caused instant color change of the solution from bright green to deep purple, however, no RCM reaction was observed. This suggests that very fast decomposition of 8 occurred after addition of such strong Brønsted acid.

    Google Scholar 

  31. Michrowska, A., MSc thesis, Department of Organic Chemistry, Warsaw University of Technology, Warsaw, Poland, 2003.

    Google Scholar 

  32. For an example of a catalytically active ruthenium allenylidene complex bearing a Me 2 N group, see Fürstner, A., Liebl, M., Lehmann, C., Piquet, M., Kunz, R., Bruneau, C., Touchard, D., Dixneuf, P.H., Chem. Eur. J. 2000, 6:1847.

    Google Scholar 

  33. Kingsbury, J.S., Garber, S.B., Giftos, J.M., Gray, B.L., Okamoto, M.M., Farrer, R.A., Fourkas, J.T., Hoveyda, A.H., Angew. Chem. Int. Edit. 2001, 40:4251.

    Article  CAS  Google Scholar 

  34. Mayr, M., Wang, D., Kröll, R., Schuler, N., Prühs, S., Fürstner, A., Buchmeiser, M.R., Adv. Synth. Catal. 2005, 347:484.

    Article  CAS  Google Scholar 

  35. Michrowska, A., Mennecke, K., Kunz, U., Kirschning, A., Grela, K., J. Am. Chem. Soc. 2006, 128:13261.

    Article  CAS  Google Scholar 

  36. For high-throughput experiments the Radleys 12 Place Heated Carousel Reaction Station (www.radleys.com) was used.

  37. Interestingly, in the case of Grubbs catalyst immobilized on polyvinyl pyridine, exclusive C-C double bond isomerization instead of CM was observed for this substrate: [Ref. 48] .

    Google Scholar 

  38. Chen, G.W., Kirschning, A., Chem. Eur. J. 2002, 8:2717.

    Google Scholar 

  39. Love, J.A., Morgan, J.P., Truka, T.M., Grubbs, R.H., Angew. Chem. Int. Edit. 2002, 41:4035.

    Article  CAS  Google Scholar 

  40. For selected applications of 5, see inter alia: (a) Kanemitsu, T., Seeberger, P.H., Org. Lett. 2003, 5:4541; (b) Rai, A.N., Basu, A., Org. Lett. 2004, 6:2861; (c) Aggarwal, V.K., Astle, C.J., Rogers-Evans, M., Org. Lett. 2004, 6:1469; (d) Kulkarni, A.A., Diver, S.T., Org. Lett. 2003, 5:3463; (e) Giessert, A.J., Brazis, N.J., Diver, S.T., Org. Lett. 2003, 5:3819; (f) Chen, B., Sleima, H.F., Macromolecules 2004, 37:5866; (g) Rezvani, A., Bazzi, H.S., Chen, B., Rakotondradany, F., Sleiman, H.F., Inorg. Chem. 2004, 43:5112; (h) Schuehler, D.E., Williams, J.E., Sponsler, M.B., Macromolecules 2004, 37:6255; (i) Parrish, B., Emrick, T., Macromolecules 2004, 37:5863; (j) Hansen, E.C., Lee, D., Org. Lett. 2004, 6:2035.

    Google Scholar 

  41. Indeed, this idea has been shown to be powerful for the immobilization of enzymes using nickel NTA-linkers on sepharose for coordinatively trapping enzymes tagged with a His-tag.

    Google Scholar 

  42. Recently, Grubbs and coworkers were able to isolate a ruthenium-hydrido complex, formed as a thermal degradation product of catalyst 2 which could be made responsible for double bond migration: Hong, S.H., Day, M.W., Grubbs, R.H., J. Am. Chem. Soc. 2004, 126:7414.

    Google Scholar 

  43. For Grubbs-type ruthenium alkylidenes bearing a quarternary ammonium group, see: Lynn, D.M., Mohr, B., Grubbs, R.H., Henling, L.M., Day, M.W., J. Am. Chem. Soc. 2000, 122:6601.

    Google Scholar 

  44. Michrowska, A., Gułajski, Ł., Kaczmarska, Z., Mennecke, K., Kirschning, A., Grela, K., Green Chem. 2006, 685.

    Google Scholar 

  45. For a review on supported variants of 4, see: (a) Garber, S.B., Kingsbury, J.S., Gray, B.L., Hoveyda, A.H., J. Am. Chem. Soc. 2000, 122:8168; (b) See [Ref. 4b] .

    Google Scholar 

  46. Wasserscheid, P., Welton, T., Ionic Liquids in Synthesis, 1 edn., Wiley-VHC, Weinheim, 2003.

    Google Scholar 

  47. For recent reviews on ionic liquids, see: (a) Welton, T., Chem. Rev. 1999, 99:2071; (b) Holbrey, J.D., Seddon, K.R., Clean Prod. Process. 1999, 1:223; (c) Sheldon, R., Chem. Commun. 2001, 2399; (d) Olivier-Bourgbigou, H., Mogna, L., J. Mol. Catal. A: Chem. 2002, 182-183, 419; (e) Wasserscheid, P., Keim, W., Angew. Chem. Int. Edit. 2000, 39:3772; (f) Dupont, J., De Souza, R.F., Suarez, P.A., Chem. Rev. 2002, 102:3667; (g) Jain, N., Kumar, A., Chauhan, S., Chauban, S.M.S., Tetrahedron 2005, 55:1015.

    Google Scholar 

  48. (a) Clavier; H., Audic, N., Mauduit, M., Guillemin, J.C., Chem. Commun. 2004, 2282; (b) Clavier, H., Audic, N., Mauduit, M., Guillemin, J.C., J. Organomet. Chem. 2005, 690:3585; (c) Yao. Q.J., J. Organomet. Chem. 2005, 690:3577.

    Google Scholar 

  49. Rix, D., Clavier, H., Coutard, Y., Gulajski, L., Grela, K., Mauduita, M., J. Organomet. Chem., 2006, 691:5397.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Michrowska, A., Gulajski, L., Grela, K. (2007). “Greener Shade of Ruthenium”: New Concepts of Activation, Immobilization, and Recovery of Ruthenium Catalysts For Green Olefin Metathesis. In: Imamoglu, Y., Dragutan, V., Karabulut, S. (eds) Metathesis Chemistry. NATO Science Series, vol 243. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6091-5_10

Download citation

Publish with us

Policies and ethics