T Cells and Antigen Recognition

  • Leisha A. Emens


Major Histocompatibility Complex Major Histocompatibility Complex Class Major Histocompatibility Complex Molecule Antigen Recognition Cell Repertoire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oltz E. Regulation of antigen receptor gene assembly in lymphocytes. Immunol Res 2001;23:121–133PubMedCrossRefGoogle Scholar
  2. 2.
    Germain R. The biochemistry and cell biology of antigen presentation by MHC Class I and Class II molecules. Implications for development of combination vaccines. Ann NY Acad Sci 1995;754:114–125PubMedCrossRefGoogle Scholar
  3. 3.
    Pulendran B. Modulating Th1/Th2 responses with microbes, dendritic cells, and pathogen recognition receptors. Immunol Res 2004;29:187–196PubMedCrossRefGoogle Scholar
  4. 4.
    Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Alt Med Rev 2003;8:223–246Google Scholar
  5. 5.
    Brandes M, Williman K, Moser B. Professional antigen presentation function by human UPgammaδ T cells. Science 2005;309:264–268PubMedCrossRefGoogle Scholar
  6. 6.
    Trombetta E, Mellman I. Cell biology of antigen processing in vitro and in vivo . Ann Rev Immunol 2005;23:975–1028CrossRefGoogle Scholar
  7. 7.
    Huang A, Qi H, Germain R. Illuminating the landscape of in vivo immunity: insights from dynamic in situ imaging of secondary lymphoid tissues. Immunity 2004;21:331–339PubMedGoogle Scholar
  8. 8.
    Walker L, Abbas A. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2001;21:11–19Google Scholar
  9. 9.
    Morgan D, Kreuwel H, Fleck S etal. Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J Immunol 1998;160:643–651PubMedGoogle Scholar
  10. 10.
    Lui G, Fairchild P, Smith R etal. Low avidity antigen recognition of self antigen by T cells permits escape from central tolerance. Immunity 1995;3:407–415CrossRefGoogle Scholar
  11. 11.
    De Visser K, Cordaro T, Kessels H etal. Low avidity self-specific T cells display a pronounced expansion defect that can be overcome by altered peptide ligands. J Immunol 2001;167:3818–3828PubMedGoogle Scholar
  12. 12.
    Lymann M, Nugent C, Marquardt K etal. The fate of low affinity tumor specific CD8+ T cells in tumor-bearing mice. J Immunol 2005;174:2563–2572Google Scholar
  13. 13.
    Hernandez J, Ko A, Sherman L. CTLA-4 blockade enhances the CTL responses to the p53 self-tumor antigen. J Immunol 2001;166:3908–3914PubMedGoogle Scholar
  14. 14.
    Gross D-A, Graff-Dubois S, Opolon P etal. High vaccination efficiency of low affinity epitopes in antitumor immunotherapy. J Clin Invest 2004;113:425–433PubMedCrossRefGoogle Scholar
  15. 15.
    Ercolini A, Ladle B, Manning E etal. Recruitment of latent pools of high aviditiy CD8+ T cells to the antitumor immune response. J Exp Med 2005; 201: 1591–1602.PubMedCrossRefGoogle Scholar
  16. 16.
    Davis M, Boniface J, Rieich Z etal. Ligand recognition by UPalphaUPbeta T cell receptors. Ann Rev Immunol 1998;15:523–544CrossRefGoogle Scholar
  17. 17.
    Jameson J, Witherden D, Havran W. T cell effector mechanisms: gamma delta and CD1d-restricted subsets. Curr Opin Immunol 2003;15:349–353PubMedCrossRefGoogle Scholar
  18. 18.
    Mani A, Gelmann E. The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 2005;23:4776–4789PubMedCrossRefGoogle Scholar
  19. 19.
    Yewdell J, Schuburt U, Bennick J. At the crossroads of cell biology and immunology: DRiPs and other sources of peptide ligands for MHC Class I molecules. J Cell Sci 2001;114:845–851PubMedGoogle Scholar
  20. 20.
    van den Eynde B, Morel S. Differential processing of Class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol 2001;13:147–153PubMedCrossRefGoogle Scholar
  21. 21.
    Morel S, Levy F, Burlet-Schiltz O etal. Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 2000;12:107–117PubMedCrossRefGoogle Scholar
  22. 22.
    Sun Y, Sijts A, Song M etal. Expression of the proteasome activator PA28 rescues the presentation of a cytotoxic T lymphocyte epitope on melanoma cells. Cancer Res 2002;62:2875–2882PubMedGoogle Scholar
  23. 23.
    Chen W, Norbury C, Cho Y etal. Immunoproteasomes shape immunodominance hierarchies of antiviral CD8+ T cells at the levels of T cell repertoire and presentation of viral antigens. J Exp Med 2001;193:1319–1326PubMedCrossRefGoogle Scholar
  24. 24.
    Toes R, Nussbaum A, Degerman S etal. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J Exp Med 2001;194:1–12PubMedCrossRefGoogle Scholar
  25. 25.
    Melief C. Regulation of cytotoxic T lymphocyte responses by dendritic cells: peaceful coexistence of cross-priming and direct priming? Eur J Immunol 2003;33:2645–2654PubMedCrossRefGoogle Scholar
  26. 26.
    Ackerman A, Cresswell P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nature Immunol 2004;5:678–684CrossRefGoogle Scholar
  27. 27.
    Heath W, Belz G, Behrens G etal. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004;199:9–26PubMedCrossRefGoogle Scholar
  28. 28.
    Heath W, Carbone F. Cross-presentation in viral immunity and self-tolerance. Nature Rev Immunol 2001;1:126–134CrossRefGoogle Scholar
  29. 29.
    Bevan M. Minor H antigens introduced on H-2 different stimulating cells cross-react at the cytotoxic T cell level during in vivo priming. J Immunol 1976;117:2233–2238PubMedGoogle Scholar
  30. 30.
    Bevan M. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 1976;143:1283–1288PubMedCrossRefGoogle Scholar
  31. 31.
    Gooding L, Edwards C. H-2 antigen requirements in the in vitro induction of SV-40-specific cytotoxic T lymphocytes. J Immunol 1980;123:125801262.Google Scholar
  32. 32.
    Huang A, Golumbek P, Ahmdzadeh M etal. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 1994;264:961–965PubMedCrossRefGoogle Scholar
  33. 33.
    Huang A, Bruce A, Pardoll D etal. In vivo cross-priming of MHC class I-restricted antigens requires TAP transporter. Immunity 1996;4:349–355PubMedCrossRefGoogle Scholar
  34. 34.
    Thomas A, Santarsiero L, Lutz E etal. Mesothelin-specific CD8+ T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J Exp Med 2004;200:297–306PubMedCrossRefGoogle Scholar
  35. 35.
    Huppa J, Davis M. T cell antigen recognition and the immunological synapse. Nature Rev Immunol 2003;3:973–983CrossRefGoogle Scholar
  36. 36.
    Krogsgaard M, Davis M. How T cells ‘see’ antigen. Nature Immunol 2005;6:239–245CrossRefGoogle Scholar
  37. 37.
    Borg N, Ely L, Beddoe T etal. The CDR3 regions of an immunodominant T cell receptor dictate the ‘energetic landscape’ of peptide-MHC recognition. Nature Immunol 2005;6:171–180CrossRefGoogle Scholar
  38. 38.
    Reiser R, Gregoire C, Darnault C etal. A T cell receptor CDR3beta loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC Class I complex. Immunity 2002;16:345–354PubMedCrossRefGoogle Scholar
  39. 39.
    Reiser R, Darnault C, Gregoire C etal. CDR3 loop flexibility contributes to the degeneracy of T cell recognition. Nature Immunol 2003;4:241–247CrossRefGoogle Scholar
  40. 40.
    Wu L, Tuot D, Lyons D etal. Two-step binding mechanism for T cell receptor recognition of peptide MHC. Nature 2002;418:553–556CrossRefGoogle Scholar
  41. 41.
    Zhao R, Collins E. Enhancing cytotoxic T cell responses with altered peptide ligands. Arch Immunol Ther Exp 2001; 49: 271–277.Google Scholar
  42. 42.
    Bakker A, van der Burg S, Huijbens R etal. Analogues of CTL epitopes with improved MHC Class I binding capacity elicit anti-melanoma CTL recognizing the wild-type epitope. Int J Cancer 1997;70:302–309PubMedCrossRefGoogle Scholar
  43. 43.
    Dyall R, Bowne W, Weber L etal. Heteroclitic immunization induces tumor immunity. J Exp Med 1998;188: 1553–1561.PubMedCrossRefGoogle Scholar
  44. 44.
    Overwijk W, Tsung A, Irvine K etal. pg100/pmel17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high affinity, altered peptide ligand. J Exp Med 1998;188:277–286PubMedCrossRefGoogle Scholar
  45. 45.
    Valmori D, Fonteneau J, Valitutti S etal. Optimal activation of tumor-reactive T cells by selected antigenic peptide analogues. Int Immunol 1999;11:1971–1980PubMedCrossRefGoogle Scholar
  46. 46.
    Slansky J, Rattis R, Boyd L etal. Enhanced antigen-specific immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity 2000;13:529–538PubMedCrossRefGoogle Scholar
  47. 47.
    Li Q-J, Dinner A, Qi S etal. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nature Immunol 2004;5:791–799CrossRefGoogle Scholar
  48. 48.
    Dustin M. Stop and go traffic to tune T cell responses. Immunity 2004;21:305–314PubMedCrossRefGoogle Scholar
  49. 49.
    Huppa J, Gleimer M, Sumen C etal. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nature Immunol 2003;4(749–755).CrossRefGoogle Scholar
  50. 50.
    Egen J, Allison J. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 2002;16:23–35PubMedCrossRefGoogle Scholar
  51. 51.
    Egen J, Kuhns M, Allison J. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nature Immunol 2002;3:611–618CrossRefGoogle Scholar
  52. 52.
    Stinchcombe J, Bossi G, Booth S etal. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 2001;15:751–761PubMedCrossRefGoogle Scholar
  53. 53.
    McGavern D, Christen U, Oldstone M. Molecular anatomy of antigen-specific CD8+ T cell engagement and synapse formation in vivo. Nature Immunol 2002;3:918–925CrossRefGoogle Scholar
  54. 54.
    Kuhn J, Poenie M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 2002;16:111–121PubMedCrossRefGoogle Scholar
  55. 55.
    Pardoll D. Spinning molecular immunology into successful immunotherapy. Nature Rev Immunol 2002;2:227–238CrossRefGoogle Scholar
  56. 56.
    Greenwald R, Freeman G, Sharpe A. The B7 family revisited. Ann Rev Immunol 2005;23:515–548CrossRefGoogle Scholar
  57. 57.
    McCoy K, Le Gros G. The role of CTLA-4 in the regulation of T cell immune responses. Immunol Cell Biol 1999;77:1–10PubMedCrossRefGoogle Scholar
  58. 58.
    Pentcheva-Hoang T, Egen J, Wojnoonski etal. B7–1 and B7–2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity 2004;21:401–413PubMedCrossRefGoogle Scholar
  59. 59.
    Khoury S, Sayegh M. The roles of the new negative T cell costimulatory pathways in regulating autoimmunity. Immunity 2004;20:529–538PubMedCrossRefGoogle Scholar
  60. 60.
    McAdam A, Greenwald R, Levin M etal. ICOS is critical for CD40-mediated antibody class-switching. Nature 2001;409:102–105PubMedCrossRefGoogle Scholar
  61. 61.
    Wallin J, Liang L, Bakardjiev A etal. New regulatory co-receptors: inducible co-stimulator and PD-1. Curr Opin Immunol 2002;14:779–782CrossRefGoogle Scholar
  62. 62.
    Chapoval A, Ni J, Lau J etal. B7-H3: a costimulatory molecule for T cell activation and IFN- UPgamma production. Nature Immunol 2001;2:269–274CrossRefGoogle Scholar
  63. 63.
    Luo L, Chapoval A, Flies D etal. B7-H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific CD8+ cytolytic T cells. J Immunol 2004;173:5445–5450PubMedGoogle Scholar
  64. 64.
    Sun X, Richards S, Prasad D etal. Mouse B7-H3 induces antitumor immunity. Gene Ther 2003;10:1728–1734PubMedCrossRefGoogle Scholar
  65. 65.
    Suh W, Gajewska B, Okada H etal. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nature Immunol 2003;4:899–906CrossRefGoogle Scholar
  66. 66.
    Shin T, Kennedy G, Gorski K etal. Cooperative B7–1/2 (CD80/86) and B7-DC costimulation of CD4+ T cells independent of the PD-1 receptor. J Exp Med 2003;198:31–38PubMedCrossRefGoogle Scholar
  67. 67.
    Tseng B, Otsuji M, Gorski K etal. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med 2001;193:839–845PubMedCrossRefGoogle Scholar
  68. 68.
    Liu X, Gao J, Wen J etal. B7-DC/PD-L2 promotes tumor immunity by a PD-1-independent mechanism. J Exp Med 2003;197:1721–1730PubMedCrossRefGoogle Scholar
  69. 69.
    Freeman G, Long A, Iwai Y etal. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000;192:1027–1034PubMedCrossRefGoogle Scholar
  70. 70.
    Latchman Y, Wood C, Chernova T etal. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nature Immunol 2001;2:261–268CrossRefGoogle Scholar
  71. 71.
    Dong H, Strome S, Salomao D etal. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Med 2002;8:793–800PubMedGoogle Scholar
  72. 72.
    Sica G, Choi I, Zhu G etal. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 2003;18:849–861PubMedCrossRefGoogle Scholar
  73. 73.
    Watts T. TNF/TNFR family members in costimulation of T cell responses. Ann Rev Immunol 2005;23:23–68CrossRefGoogle Scholar
  74. 74.
    Tong A, Stone M. Prospects for CD40-directed experimental therapy of human cancer. Cancer Gene Ther 2002;10:1–13CrossRefGoogle Scholar
  75. 75.
    Yu P, Lee Y, Liu W etal. Priming of naive T cells inside tumors leads to eradication of established tumors. Nature Immunol 2004;5:141–149CrossRefGoogle Scholar
  76. 76.
    Hurwitz A, Yu T, Leach D, etal. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci USA 1998;18:10067–10071CrossRefGoogle Scholar
  77. 77.
    van Elsas A, Hurwitz A, Allison J. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 1999;190:355–366PubMedCrossRefGoogle Scholar
  78. 78.
    Hodi F, Mihm M, Soiffer R etal. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 2003;100:4712–4717PubMedCrossRefGoogle Scholar
  79. 79.
    Phan G, Yang J, Sherry R etal. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 2003;100:8372–8377PubMedCrossRefGoogle Scholar
  80. 80.
    Sanderson K, Scotland R, Lee P etal. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J Clin Oncol 2005;23:741–750PubMedCrossRefGoogle Scholar
  81. 81.
    Radhakrishnan S, Nguyen L, Ciric B etal. Naturally occurring human IgM antibody that binds B7-DC and potentiates T cell stimulation by dendritic cells. J Immunol 2003;170:1830–1838PubMedGoogle Scholar
  82. 82.
    Radhakrishnan S, Nguyen L, Ciric B etal. Immunotherapeutic potential of B7-DC (PD-L2) cross-linking antibody in conferring antitumor immunity. Cancer Res 2004;64:4965–4972PubMedCrossRefGoogle Scholar
  83. 83.
    Curiel T, Wei S, Dong H etal. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nature Med 2003;9:562–567PubMedCrossRefGoogle Scholar
  84. 84.
    Strome S, Dong H, Tamura H etal. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 2003;63:6501–6501PubMedGoogle Scholar
  85. 85.
    Hirano F, Kaneko K, Tamura H etal. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 2005;65:1089–1096PubMedGoogle Scholar
  86. 86.
    Melero I, Shuford W, Newby S etal. Monoclonal antibodies against the 4–1BB T-cell activation molecule eradicate established tumors. Nature Med 1997;3:682–685PubMedCrossRefGoogle Scholar
  87. 87.
    May K, Chen L, Zheng P etal. Anti-4–1BB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T cells. Cancer Res 2002;62:3459–3465PubMedGoogle Scholar
  88. 88.
    Ito F, Li Q, Shreiner A, Okuyama R etal. Anti-CD137 monoclonal antibody administration augments the antitumor efficacy of dendritic cell-based vaccines. Cancer Res 2004;64:8411–8419PubMedCrossRefGoogle Scholar
  89. 89.
    Sugamura K, Ishii N, Weinberg A. Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nature Rev Immunol 2004;4:420–431CrossRefGoogle Scholar
  90. 90.
    Bansal-Pakala P, Jember A, Croft M. Signaling through OX40 (CD134) breaks peripheral T-cell tolerance. Nature Med 2001;7:907–912PubMedCrossRefGoogle Scholar
  91. 91.
    Maxwell J, Weinberg A, Prell R etal. Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J Immunol 2000;164:107–112PubMedGoogle Scholar
  92. 92.
    Takeda I, Ine S, Killeen N etal. Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol 2004;172:3580–3589PubMedGoogle Scholar
  93. 93.
    Valzasina B, Guiducci C, Dislich H etal. Triggering of OX40 (CD134) on CD4+CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 2005;105:2845–2851PubMedCrossRefGoogle Scholar
  94. 94.
    Pan P, Zang Y, Weber K etal. OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Molecular Ther 2002;6:528–536CrossRefGoogle Scholar
  95. 95.
    Gri G, Gallo E, Di Carlo E etal. OX40 ligand-transduced tumor cell vaccine synergizes with GM-CSF and requires CD40-APC signaling to boost the host T cell antitumor response. J Immunol 2003;170:99–106PubMedGoogle Scholar
  96. 96.
    Diehl L, den Boer A, van der Voort E etal. The role of CD40 in peripheral T cell tolerance and immunity. J Mol Med 2000;78:363–371PubMedCrossRefGoogle Scholar
  97. 97.
    Sotomayor E, Borrello I, Tubb E etal. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nature Med 1999;5:780–787PubMedCrossRefGoogle Scholar
  98. 98.
    Bronte V, Serafini P, Mazzoni A etal. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol 2003;24:301–305CrossRefGoogle Scholar
  99. 99.
    O’Garra A, Vierira P. Regulatory T cells and mechanisms of immune system control. Nature Med 2004;10:801–805PubMedCrossRefGoogle Scholar
  100. 100.
    Onizuka S, Tawara I, Shimizu J etal. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 1999;59:3128–3133PubMedGoogle Scholar
  101. 101.
    Sutmuller R, van Duivenvoorde L, van Elsas A etal. Synergism of cytotoxic T lymphocyte-associated antigen-4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. JExp Med 2001;194:824–832Google Scholar
  102. 102.
    Antony P, Piccirillo C, Akpinarli A etal. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. JImmunol 2005;174:2591–2601Google Scholar
  103. 103.
    Ferrone S, Finerty J, Jaffee E etal. How much longer will tumour cells fool the immune system? Immunol Today 2000;21:70–72PubMedCrossRefGoogle Scholar
  104. 104.
    Wang T, Niu G, Kortylewski M etal. Regulation of the innate and adaptive immune responses by Stat-3-signaling in tumor cells. Nature Med 2004;10:48–54PubMedCrossRefGoogle Scholar
  105. 105.
    Munn D, Mellor A. IDO and tolerance to tumors. Trends Mol Med 2004;10:15–18PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Leisha A. Emens
    • 1
  1. 1.Departments of Oncology, The Johns Hopkins University School of MedicineSidney Kimmel Comprehensive Cancer CenterBaltimore

Personalised recommendations