Unmasking tumor cell immunogenicity by chemotherapy: implications for therapy

  • Irma Larma
  • Robbert G. van der Most
  • Richard A. Lake


Immunogenicity NKG2D TRAIL chemotherapy immunotherapy danger signals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hernandez, J., Aung, S., Marquardt, K., and Sherman, L.A., 2002, Uncoupling of proliferate potential and gain of effector function by CD8+ T cells responding to self-antigens, J. Exp. Med. 196:323–333.PubMedCrossRefGoogle Scholar
  2. 2.
    Lake, R.A., and Robinson, B.W.S., 2005, Immunotherapy and chemotherapy – a practical partnership, Nat. Rev. Cancer. 5:397–405.PubMedCrossRefGoogle Scholar
  3. 3.
    Rock, K.L., and Shen, L., 2005, Cross-presentation: underlying mechanism and role in immune surveillance, Immunol. Rev. 207:166–183.PubMedCrossRefGoogle Scholar
  4. 4.
    Harshyne, L.A., Watkins, S.C., Gambotto, A., and Barrat-Boyes, S.M., 2001, Dendritic cells acquire antigens from live cells for cross-presentation to CTL, J. Immunol. 166:3717–3723.PubMedGoogle Scholar
  5. 5.
    Radons, J., and Multhoff, G., 2005, Immunostimulatory functions of membrane-bound and exported heat shock protein 70, Exerc. Immunol. Rev. 11:17–33.PubMedGoogle Scholar
  6. 6.
    Reis e Sousa, C., 2004, Toll-like receptors and dendritic cells: for whom the bug tolls, Semin. Immunol. 16(1):27–34.PubMedCrossRefGoogle Scholar
  7. 7.
    Le Bon, A., Etchart, N., Rossmann, C., Ashton, M., Hou, S., Gewert, D., Borrow, P., and Tough. D.F., 2003, Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon, Nat. Immunol. 4:1009–1015.PubMedCrossRefGoogle Scholar
  8. 8.
    Lyman, M.A., Aung, S., Biggs, J.A., and Sherman, L.A., 2004, A spontaneously arising pancreatic tumor does not promote the differentiation of naive CD8+ T lymphocytes into effector CTL, J. Immunol. 172:6558–6567.PubMedGoogle Scholar
  9. 9.
    Marzo, A.L., Lake, R.A., Lo, D., Sherman, L, McWilliam, A., Nelson, D., Bruce W. S. Robinson, B.W.S., and Scott, B., 1999, Tumor antigens are constitutively presented in the draining lymph nodes, J. Immunol. 162:5838–5845.PubMedGoogle Scholar
  10. 10.
    Nowak, A.K., Lake, R.A., Marzo, A.L., Scott, B., Heath, W.R., Collins, E.J., Frelinger, J.A., and Robinson, B.W.S., 2003a, Induction of tumour cell apoptosis in vivo increases tumour antigen cross-presentation, cross-priming rather than cross-tolerating tumour specific CD8 T cells, J Immunol. 170:4905–4913.Google Scholar
  11. 11.
    Casares, N., Pequignot, M.O., Tesniere, A., Ghiringhelli, F., Roux, S., Chaput, N., Schmitt, E., Hamai, A., Hervas-Stubbs, S., Obeid, M., Countant, F., Metivier, D., Pichard, E., Aucouturier, P., Pierron, G., Garrido, C., Zitvogel, L., and Kroemer, G., 2005, Caspase-dependent immunogenicity of doxorubicin-induced tumour cell death, J. Exp. Med. 202:1691–1701.PubMedCrossRefGoogle Scholar
  12. 12.
    Matzinger, P., 1994, Tolerance, danger and the extended family, Annu. Rev. Immunol. 12:991–1045.PubMedGoogle Scholar
  13. 13.
    Matzinger, P., 1998, An innate sense of danger, Semin. Immunol. 10:399–415.PubMedCrossRefGoogle Scholar
  14. 14.
    Shi, Y., Zheng, W., and Rock, K.L., 2000, Cell injury releases endogenous adjuvants that stimulate cytotoxic T-cell responses, Proc Natl. Acad. Sci. USA. 97:14590–14595.PubMedCrossRefGoogle Scholar
  15. 15.
    Shi, Y., and Rock, K.L., 2002, Cell death releases endogenous adjuvants that selectively enhance immune surveillance of particulate antigens, Eur. J. Immunol. 32:155–162.PubMedCrossRefGoogle Scholar
  16. 16.
    Shi, Y., Evans, J.E., and Rock, K.L., 2003, Molecular identification of a danger signal that alerts the immune system to dying cells, Nature. 425: 516–521.PubMedCrossRefGoogle Scholar
  17. 17.
    Hu, D.E., Moore, A.M., Thomsen, L.L., and Brindle, K.M., 2004, Uric acid promotes tumour immune rejection, Cancer Res. 64:5059–5062.PubMedCrossRefGoogle Scholar
  18. 18.
    Schulz, O., Diebold, S.S., Chen, M., Naslund, T.I., Nolte, M.A., Alexopoulou, L., Azuma, Y.T., Flavell, R.A., Liljestrom, P., and Reis e Sousa, C., 2005, Toll-like receptor3 promotes cross-priming to virus-infected cells, Nature. 433(7028):887–892.PubMedCrossRefGoogle Scholar
  19. 19.
    Rad, A.N., Pollara, G., Sohaib, S.M.A., Chiang, C., Chain, B.M., and Katz, D.R., 2003, The different influence of allogeneic tumour cell death via DNA damage on dendritic cell maturation and antigen presentation, Cancer Res. 63:5143–5150.PubMedGoogle Scholar
  20. 20.
    Okabe, Y., Kawane, K., Akira, S., Taniguchi, T., and Nagata, S., 2005, Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation, J. Exp. Med. 202(10):1333–1339.PubMedCrossRefGoogle Scholar
  21. 21.
    Gasser, S., and Raulet, D.H., 2006, The DNA damage response aroused the immune system, Cancer Res. 66:3959–3962.PubMedCrossRefGoogle Scholar
  22. 22.
    Vivier, E., Tomasello, E., and Paul, P., 2002, Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition?, Curr. Opin. Immunol. 14:306–311.PubMedCrossRefGoogle Scholar
  23. 23.
    Chan, C.W., Crafton, E., Fan, H.N., Flook, J., Yoshimura, K., Skarica, M., Brockstedt, D., Dubensky, T.W., Stins, M.F., Lanier, L.L., Pardoll, D.M., and Housseau, F., 2006, Interferon-producing killer cells provide a link between innate and adaptive immunity, Nat. Med. 12:207–213.PubMedCrossRefGoogle Scholar
  24. 24.
    Markiewicz, M.A., Carayannopoulos L.N., Naidenko, O.V., Matsui, K., Burack, W.R., Wise, E.L., Fremont, D.H., Allen, P.M., Yokoyama, W.M., Colonna, M., and Shaw, A.S., 2005, Costimulation through NKG2D enhances murine CD8+CTL function: similarities and differences between NKG2D and CD28 costimulation, J. Immunol. 175:2825–2833.PubMedGoogle Scholar
  25. 25.
    Gasser, S., Orsulic, S., Brown, E.J., and Raulet, D.H., 2005, The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor, Nature. 436:1186–1190.PubMedCrossRefGoogle Scholar
  26. 26.
    Waldhauer, I., and Steinle, A., 2006, Proteolytic release of soluble UL16-binding protein 2 from tumour cells, Cancer Res. 66:2520–2526.PubMedCrossRefGoogle Scholar
  27. 27.
    Groh, V., Wu, J., Yee, C., and Spies, T., 2002, Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation, Nature. 419:734–738.PubMedCrossRefGoogle Scholar
  28. 28.
    Wiemann, K., Mittrucker, H., Feger, U., Welte, S.A. Yokoyama, W.M., Spies, T, Rammensee, H.G., and Steinle, A., 2005, Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo, J. Immunol. 175:720–729.PubMedGoogle Scholar
  29. 29.
    Bui, J.D., Carayannopoulos, L.N., Lanier, L.L., Yokoyama, W.M., and Screiber, R.D., 2006, IFN-dependent down-regulation of the NKG2D ligand H60 on tumors, J. Immunol. 176:905–913.PubMedGoogle Scholar
  30. 30.
    Wang, S., and El-Deiry, W.S., 2003, TRAIL and apoptosis induction by TNF-family death receptors, Oncogene. 22:8628–2633.PubMedCrossRefGoogle Scholar
  31. 31.
    Cretney, E., Takeda, K., Yagita, H., Glaccum M., Peschon, J.J., and Smyth, M.J., 2002, Increased susceptibility to tumour initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice, J. Immunol. 168(3):1356–1361.PubMedGoogle Scholar
  32. 32.
    Smyth, M.J., Takeda, K., Hayakawa, Y., Peschon, J.J., vad den Brink, M.R., and Yagita, H., 2003, Nature’s TRAIL-on a path to cancer immunotherapy, Immunity. 18(1):1–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Lamhamedi-Cherradi, S.E., Zheng, S.J., Maguschak, K.A., Peschon, J., and Chen, Y.H., 2003, Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL-/- mice, Nat. Immunol. 4(3):255–260.PubMedCrossRefGoogle Scholar
  34. 34.
    Wiley, S.R., Schooley, K., Smolak, P.J., Din, W.S., Huang, C.P., Nicholl, J.K., Sutherland, G.R., Smith, T.D., Rauch, C., and Smith, C.A., 1995, Identification and characterisation of a new member of the TNF family that induces apoptosis, Immunity. 3(6):673–682.PubMedCrossRefGoogle Scholar
  35. 35.
    Kayagaki, N., Yamaguchi, N., Nakayama, M., Kawasaki, A., Akiba, H., Okumura, K., and Yagita, H., 1999a, Involvement of TNF-related apoptosis-inducing ligand in human CD4+ T cell-mediated cytotoxicity. J. Immunol. 162(5):2639–2647.Google Scholar
  36. 36.
    Kayagaki, N., Yamaguchi, N., Nakayama, M., Takeda, K., Akiba, H., Tsutsui, H., Okamura, H., Nakanishi, K., Okumura, K., and Yagita, H., 1999b, Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J. Immunol. 163(4):1906–1913.Google Scholar
  37. 37.
    Griffith, T.S., Wiley, S.R., Kubin, M.Z., Sedger, L.M., Maliszewski, C.R., and Fanger, N.A., 1999, Monocyte-mediated tumouricidal activity via the tumour necrosis factor-related cytokine, TRAIL, J. Exp. Med. 189(8):1343–1354.PubMedCrossRefGoogle Scholar
  38. 38.
    Fanger, N.A., Maliszewski, C.R., Schooley, K., and Griffuth, T.S., 1999, Human dendritic cells mediate cellular apoptosis via tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), J. Exp. Med. 190(8):1155–1164.PubMedCrossRefGoogle Scholar
  39. 39.
    Koga, Y., Matsuzaki, A., Suminoe, A., Hattori, H and Hara, T., 2004, Neutrophil-derived TNF-related apoptosis-inducing ligand (TRAIL): a novel mechanism of antitumor effect by neutrophils, Cancer Res. 64(3):1037–1043.PubMedCrossRefGoogle Scholar
  40. 40.
    Kelly, M.M., Hoel, B.D., and Voelkel-Johnson, C., 2002, Doxorubicin pretreatmant sensitizes prostate cancer cell lines to TRAIL induced apoptosis which correlates with the loss of c-FLIP expression, Cancer Bio. Ther. y1(5)yy:520–527.Google Scholar
  41. 41.
    Mattarollo, S.R. Kenna, T., Nieda, M., and Nicol, A.J., 2006, Chemotherapy pretreatmant sensitizes solid tumour-derived cell line to Vα24+ NKT cell-mediated cytotoxicity, Int. J. Cancer. y119:1630–1637.CrossRefGoogle Scholar
  42. 42.
    Lundqvist, A. Abrams, S.I., Schrump, D.S., Alvarez, G., Suffredini, D., Berg, M., and Childs, R., 2006, Bortezomib and depsipeptide sensitize tumors to tumor necrosis factor-related apoptosis-inducing ligand: a novel method to potentiate natural killer cell tumor cytotoxicity, Cancer Res. y66(14)y:7317–7325.CrossRefGoogle Scholar
  43. 43.
    Ibe, S., Qin, Z., Schuler, T., Preiss, S., and Blankenstein, T., 2001, Tumour rejection by disturbing tumour stroma cell interactions, J. Exp. Med. yy194(11)y:1549–1559.CrossRefGoogle Scholar
  44. 44.
    Mullins, D.W., Burger, C.J., and Elgert, K.D., 1999, Paclitaxel enhgances macrophage IL-12 production in tumour-bearing hosts through nitric oxide, J. Immunol. y162:6811–6818.Google Scholar
  45. 45.
    Bocci, G., Francia, G., Man, S., Lawler, J., and Kerbel, R.S., 2003, Thrombospodin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy, Proc. Natl. Acad. Sci. U S A. y100(22)yy:12917–12922.CrossRefGoogle Scholar
  46. 46.
    Jassar, A.S., Suzuki, E., Kapoor, V., Sun, J., Silverberg, M.B., Cheung, L., Burdick, M.D., Strieter, R.M., Ching, L., Kaiser, L.R., and Albelds, S.M., 2005, Activation of tumour-associated macrophages by the vascular disrupting angent 5,6-dimethylxanthenone-4-acetic acid induces an effective CD8+ T-cell-mediated antitumour immune response in murine models of lung cancer and mesothelioma, Cancer Res. yy64(24)y:11752–11761.CrossRefGoogle Scholar
  47. 47.
    Krupica, T., Fry, T.J., and Mackall, C.L., 2006, Autoimmunity during lymphopenia: a two-hit model, Clin. Immunol. y120:121–128.CrossRefGoogle Scholar
  48. 48.
    Beyer, M., Kochanek, M., Darabi, K., Popov, A., Jensen, M., Endl, E., Knolle, P.A., Thomas, R.K., von Bergwelt-Bailon, M., Debey, S., Hallek, M., and Schultze, J.L., 2005, Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine, Blood. yy106(6)yy:2018–1025.CrossRefGoogle Scholar
  49. 49.
    Lutsiak, M.E.C., Semnani, R.T., De Pascalis, R., Kashmiri, S.V.S., Schlom, J., and Sabzevari, H., 2005, Inhibition of CD4+CD25+T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide, Blood. y105(7)y:2862–2868.CrossRefGoogle Scholar
  50. 50.
    Nowak, A.K., Robinson, B.W., Lake, R.A., 2003b, Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumours, Cancer Res. yy63(15)yy: 4490–4496.Google Scholar
  51. 51.
    Zhang, H., Chua, K.S., Guimond, M., Kapoor, V., Brown, M.V., Fleisher, T.A., Long, L.M., Bernstein, D., Hill, B.J., Douek, D.C., Berzofsky, J.A., Carrter, C.S., Read, E.J., Helman, L.J., and Mackall, C.L., 2005, Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells, Nat. Med. y11(11)yy:1238–1243.CrossRefGoogle Scholar
  52. 52.
    Rosenberg, S.A., Sportes, C., Ahmadzadeh, M., Fry, T.J., Ngo, L.T., Schwarz, S.L., Stetler-Stevenson, M., Morton, K.E., Mavroukakis, S.A., Morre, M., Buffet, R., Mackall, C.L., and Gress, R.E., 2006, IL-17 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decreas of CD4+ T-regulatory cells, J. Immunother. yy29(3)y:313–319.CrossRefGoogle Scholar
  53. 53.
    Kuwajima, S., Sato, T., Ishida, K., Tada, H., Tezuka, H., and Ohteki, T., 2006, Interleukin 15-dependent crosstalk between conventional and plasmacytoid dendritic cells is essential for CpG-induced immune activation, Nature Immunol. y7(7)yy:740–746.CrossRefGoogle Scholar
  54. 54.
    Teague, R.M., Sther, B.D., Sacks, J.A., Huang, M.Z., Dossett, M.L., Morimoto, J., Tan, X., Sutton, S.E., Cooke, M.P., Ohlen, C., and Greenberg, P.D., 2006, Interleukin-15 rescues tolerant CD8+T cells for use in adaptive immunotherapy of established tumors, Nat. Med. yy12(3)y:335–341.CrossRefGoogle Scholar
  55. 55.
    Smyth, M.J., Hayakawa, Y., Cretney, E., Zerafa, N., Sivakumar, P., Yagita, H., and Takeda, K., 2006, IL-21 enhances tumour-specific CTL induction by anti-DR5 antibody therapy, J.Immunol. y176:6347–6355.Google Scholar
  56. 56.
    Emens, L.A., and Jaffee, E.M., 2005, Leveraging the activity of tumour vaccines with cytotoxic chemotherapy, Cancer Res. yy65(18)y:8059–8064.CrossRefGoogle Scholar
  57. 57.
    Ercolini, A.M., Ladle, B.H., Manning, E.A., Pfannenstiel, L.W., Armstrong, T.D., Machiels, J.H., Bieler, J.G., Emans, L.A., Reilly, R.T., and Jaffee, E.M., 2005, Recruitment of latent pools of high-avidity CD8+T cells to the antitumour immune response, J. Exp. Med. yy201(10)y:1591–1602.CrossRefGoogle Scholar
  58. 58.
    Le, H.N., Lee, N.C., Tsung, K., and Norton, J.A., 2001, Pre-existing tumour-sensitized T cells are essential for eradication of established tumours by IL-12 and cyclophosphamide plus IL-12, J Immunol. y167:6765–6772.Google Scholar
  59. 59.
    Belldegrun, A., Uppenkamp, I., and Rosenberg, S.A., 1988, Anti-tumour reactivity of human lymphokine activated killer (LAK) cells after fresh and cultured preparations of renal cell cancers, J. Urol. y139(1)yy:150–155.Google Scholar
  60. 60.
    Dudley, M.E., Wunderlich, J.R., Robbins, P.F., Yang, J.C., Hwu, P., Schwartzentruber, D.J., Topalian, S.L., Sherry, R., Restifo, N.P., Hubicki, A.M., Robinson, M.R., Raffeld, M., Duray, P., Seipp, C.A., Rogers-Freezer, L., Morton, K.E., Mavroukakis, S.A. White, D.E. and Rosenberg, S.A., 2002, Cancer regression and autoimmunity in patients after clonal repopulation with antitumour lymphocytes, Science. y298(5594)yy:850–854.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Irma Larma
    • 1
  • Robbert G. van der Most
    • 1
  • Richard A. Lake
    • 1
  1. 1.National Research Centre for Asbestos-related DiseasesUWA Departmant of Medicine, Sir Charles Gairdner HospitalNedlands, Perth

Personalised recommendations