Monoclonal Antibodies in Cancer Therapy

  • Christoph Rader
  • Michael R. Bishop


Epidermal Growth Factor Receptor Clin Oncol Chronic Lymphocytic Leukemia Phage Display Gemtuzumab Ozogamicin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Werner RG. Economic aspects of commercial manufacture of biopharmaceuticals. J Biotechnol. 2004;113:171–182.PubMedCrossRefGoogle Scholar
  2. 2.
    Lin MZ, Teitell MA, Schiller GJ. The evolution of antibodies into versatile tumor-targeting agents. Clin Cancer Res. 2005;11:129–138.PubMedGoogle Scholar
  3. 3.
    Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer. 2001;1:118–129.PubMedCrossRefGoogle Scholar
  4. 4.
    Hunkapiller T, Goverman J, Koop BF, Hood L. Implications of the diversity of the immunoglobulin gene superfamily. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:15–29.PubMedGoogle Scholar
  5. 5.
    Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302:575–581.PubMedCrossRefGoogle Scholar
  6. 6.
    Presta L. Antibody engineering for therapeutics. Curr Opin Struct Biol. 2003;13:519–525.PubMedCrossRefGoogle Scholar
  7. 7.
    Hudson PJ, Souriau C. Engineered antibodies. Nat Med. 2003;9:129–134.PubMedCrossRefGoogle Scholar
  8. 8.
    Cao Y, Lam L. Bispecific antibody conjugates in therapeutics. Adv Drug Deliv Rev. 2003;55:171–197.PubMedCrossRefGoogle Scholar
  9. 9.
    Kufer P, Lutterbuse R, Baeuerle PA. A revival of bispecific antibodies. Trends Biotechnol. 2004;22:238–244.PubMedCrossRefGoogle Scholar
  10. 10.
    Scott AM, Welt S. Antibody-based immunological therapies. Curr Opin Immunol. 1997;9:717–722.PubMedCrossRefGoogle Scholar
  11. 11.
    Ranson M, Sliwkowski MX. Perspectives on anti-HER monoclonal antibodies. Oncology. 2002;63 Suppl 1:17–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Gerber HP, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 2005;65:671–680.PubMedGoogle Scholar
  13. 13.
    Tarli L, Balza E, Viti F, et al. A high-affinity human antibody that targets tumoral blood vessels. Blood. 1999;94:192–198.PubMedGoogle Scholar
  14. 14.
    Davis TA, Maloney DG, Czerwinski DK, Liles TM, Levy R. Anti-idiotype antibodies can induce long-term complete remissions in non-Hodgkin’s lymphoma without eradicating the malignant clone. Blood. 1998;92:1184–1190.PubMedGoogle Scholar
  15. 15.
    Cragg MS, French RR, Glennie MJ. Signaling antibodies in cancer therapy. Curr Opin Immunol. 1999;11:541–547.PubMedCrossRefGoogle Scholar
  16. 16.
    Grunwald V, Hidalgo M. Developing inhibitors of the epidermal growth factor receptor for cancer treatment. J Natl Cancer Inst. 2003;95:851–867.PubMedCrossRefGoogle Scholar
  17. 17.
    Besnault L, Schrantz N, Auffredou MT, Leca G, Bourgeade MF, Vazquez A. B cell receptor cross-linking triggers a caspase-8-dependent apoptotic pathway that is independent of the death effector domain of Fas-associated death domain protein. J Immunol. 2001;167:733–740.PubMedGoogle Scholar
  18. 18.
    Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med. 2000;6:443–446.PubMedCrossRefGoogle Scholar
  19. 19.
    Treon SP, Hansen M, Branagan AR, et al. Polymorphisms in FcgammaRIIIA (CD16) receptor expression are associated with clinical response to rituximab in Waldenstrom’s macroglobulinemia. J Clin Oncol. 2005;23:474–481.PubMedCrossRefGoogle Scholar
  20. 20.
    Cragg MS, Glennie MJ. Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood. 2004;103:2738–2743.PubMedCrossRefGoogle Scholar
  21. 21.
    King DM, Albertini MR, Schalch H, et al. Phase I clinical trial of the immunocytokine EMD 273063 in melanoma patients. J Clin Oncol. 2004;22:4463–4473.PubMedCrossRefGoogle Scholar
  22. 22.
    Pastan II, Kreitman RJ. Immunotoxins for targeted cancer therapy. Adv Drug Deliv Rev. 1998;31:53–88.PubMedCrossRefGoogle Scholar
  23. 23.
    Kreitman RJ, Wilson WH, Bergeron K, et al. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med. 2001;345:241–247.PubMedCrossRefGoogle Scholar
  24. 24.
    Bagshawe KD, Sharma SK, Begent RH. Antibody-directed enzyme prodrug therapy (ADEPT) for cancer. Expert Opin Biol Ther. 2004;4:1777–1789.PubMedCrossRefGoogle Scholar
  25. 25.
    Rader C. Antibody libraries in drug and target discovery. Drug Discov Today. 2001;6:36–43.PubMedCrossRefGoogle Scholar
  26. 26.
    Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–497.PubMedCrossRefGoogle Scholar
  27. 27.
    Bain B, Brazil M. Adalimumab. Nat Rev Drug Discov. 2003;2:693–694.PubMedCrossRefGoogle Scholar
  28. 28.
    Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228:1315–1317.PubMedCrossRefGoogle Scholar
  29. 29.
    Burton DR, Barbas CF, 3rd. Human antibodies from combinatorial libraries. Adv Immunol. 1994;57:191–280.PubMedCrossRefGoogle Scholar
  30. 30.
    Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. Making antibodies by phage display technology. Annu Rev Immunol. 1994;12:433–455.PubMedCrossRefGoogle Scholar
  31. 31.
    Lipovsek D, Pluckthun A. In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods. 2004;290:51–67.PubMedCrossRefGoogle Scholar
  32. 32.
    Feldhaus MJ, Siegel RW. Yeast display of antibody fragments: a discovery and characterization platform. J Immunol Methods. 2004;290:69–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Spieker-Polet H, Sethupathi P, Yam PC, Knight KL. Rabbit monoclonal antibodies: generating a fusion partner to produce rabbit-rabbit hybridomas. Proc Natl Acad Sci U S A. 1995;92:9348–9352.PubMedCrossRefGoogle Scholar
  34. 34.
    Rader C, Barbas CF, 3rd. Phage display of combinatorial antibody libraries. Curr Opin Biotechnol. 1997;8:503–508.PubMedCrossRefGoogle Scholar
  35. 35.
    Fellouse FA, Wiesmann C, Sidhu SS. Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proc Natl Acad Sci U S A. 2004;101:12467–12472.PubMedCrossRefGoogle Scholar
  36. 36.
    Knappik A, Ge L, Honegger A, et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol. 2000;296:57–86.PubMedCrossRefGoogle Scholar
  37. 37.
    Vaughan TJ, Williams AJ, Pritchard K, et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol. 1996;14:309–314.PubMedCrossRefGoogle Scholar
  38. 38.
    Rader C, Ritter G, Nathan S, et al. The rabbit antibody repertoire as a novel source for the generation of therapeutic human antibodies. J Biol Chem. 2000;275:13668–13676.PubMedCrossRefGoogle Scholar
  39. 39.
    Tsurushita N, Park M, Pakabunto K, et al. Humanization of a chicken anti-IL-12 monoclonal antibody. J Immunol Methods. 2004;295:9–19.PubMedCrossRefGoogle Scholar
  40. 40.
    Kellermann SA, Green LL. Antibody discovery: the use of transgenic mice to generate human monoclonal antibodies for therapeutics. Curr Opin Biotechnol. 2002;13:593–597.PubMedCrossRefGoogle Scholar
  41. 41.
    Reisner Y, Dagan S. The Trimera mouse: generating human monoclonal antibodies and an animal model for human diseases. Trends Biotechnol. 1998;16:242–246.PubMedCrossRefGoogle Scholar
  42. 42.
    Pasqualini R, Arap W. Hybridoma-free generation of monoclonal antibodies. Proc Natl Acad Sci U S A. 2004;101:257–259.PubMedCrossRefGoogle Scholar
  43. 43.
    Teeling JL, French RR, Cragg MS, et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood. 2004;104:1793–1800.PubMedCrossRefGoogle Scholar
  44. 44.
    Tsurushita N, Hinton PR, Kumar S. Design of humanized antibodies: From anti-Tac to Zenapax. Methods. 2005;36:69–83.PubMedCrossRefGoogle Scholar
  45. 45.
    Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A. 1984;81:6851–6855.PubMedCrossRefGoogle Scholar
  46. 46.
    Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature. 1988;332:323–327.PubMedCrossRefGoogle Scholar
  47. 47.
    Holmes MA, Buss TN, Foote J. Conformational correction mechanisms aiding antigen recognition by a humanized antibody. J Exp Med. 1998;187:479–485.PubMedCrossRefGoogle Scholar
  48. 48.
    Foote J, Winter G. Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol. 1992;224:487–499.PubMedCrossRefGoogle Scholar
  49. 49.
    Wedemayer GJ, Patten PA, Wang LH, Schultz PG, Stevens RC. Structural insights into the evolution of an antibody combining site. Science. 1997;276:1665–1669.PubMedCrossRefGoogle Scholar
  50. 50.
    Rosok MJ, Yelton DE, Harris LJ, et al. A combinatorial library strategy for the rapid humanization of anticarcinoma BR96 Fab. J Biol Chem. 1996;271:22611–22618.PubMedCrossRefGoogle Scholar
  51. 51.
    Baca M, Presta LG, O’Connor SJ, Wells JA. Antibody humanization using monovalent phage display. J Biol Chem. 1997;272:10678–10684.PubMedCrossRefGoogle Scholar
  52. 52.
    Jespers LS, Roberts A, Mahler SM, Winter G, Hoogenboom HR. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology (N Y). 1994;12:899–903.CrossRefGoogle Scholar
  53. 53.
    Osbourn J, Groves M, Vaughan T. From rodent reagents to human therapeutics using antibody guided selection. Methods. 2005;36:61–68.PubMedCrossRefGoogle Scholar
  54. 54.
    Rader C, Cheresh DA, Barbas CF, 3rd. A phage display approach for rapid antibody humanization: designed combinatorial V gene libraries. Proc Natl Acad Sci U S A. 1998;95:8910–8915.PubMedCrossRefGoogle Scholar
  55. 55.
    Ritter G, Cohen LS, Williams C, Jr., Richards EC, Old LJ, Welt S. Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33. Cancer Res. 2001;61:6851–6859.PubMedGoogle Scholar
  56. 56.
    Clark M. Antibody humanization: a case of the ‘Emperor’s new clothes’? Immunol Today. 2000;21:397–402.PubMedCrossRefGoogle Scholar
  57. 57.
    Barbas CF, 3rd, Burton DR. Selection and evolution of high-affinity human anti-viral antibodies. Trends Biotechnol. 1996;14:230–234.PubMedCrossRefGoogle Scholar
  58. 58.
    Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381:751–758.PubMedCrossRefGoogle Scholar
  59. 59.
    Barbas CF, 3rd, Hu D, Dunlop N, et al. In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity. Proc Natl Acad Sci U S A. 1994;91:3809–3813.PubMedCrossRefGoogle Scholar
  60. 60.
    Chowdhury PS, Pastan I. Improving antibody affinity by mimicking somatic hypermutation in vitro. Nat Biotechnol. 1999;17:568–572.PubMedCrossRefGoogle Scholar
  61. 61.
    Ho M, Kreitman RJ, Onda M, Pastan I. In vitro antibody evolution targeting germline hot spots to increase activity of an anti-CD22 immunotoxin. J Biol Chem. 2005;280:607–617.PubMedCrossRefGoogle Scholar
  62. 62.
    Yang WP, Green K, Pinz-Sweeney S, Briones AT, Burton DR, Barbas CF, 3rd. CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J Mol Biol. 1995;254:392–403.PubMedCrossRefGoogle Scholar
  63. 63.
    Schier R, McCall A, Adams GP, et al. Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J Mol Biol. 1996;263:551–567.PubMedCrossRefGoogle Scholar
  64. 64.
    Rader C, Popkov M, Neves JA, Barbas CF, 3rd. Integrin alpha(v)beta3 targeted therapy for Kaposi’s sarcoma with an in vitro evolved antibody. Faseb J. 2002;16:2000–2002.PubMedGoogle Scholar
  65. 65.
    Adams GP, Schier R. Generating improved single-chain Fv molecules for tumor targeting. J Immunol Methods. 1999;231:249–260.PubMedCrossRefGoogle Scholar
  66. 66.
    Roopenian DC, Christianson GJ, Sproule TJ, et al. The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol. 2003;170:3528–3533.PubMedGoogle Scholar
  67. 67.
    Shields RL, Namenuk AK, Hong K, et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem. 2001;276:6591–6604.PubMedCrossRefGoogle Scholar
  68. 68.
    Boye J, Elter T, Engert A. An overview of the current clinical use of the anti-CD20 monoclonal antibody rituximab. Ann Oncol. 2003;14:520–535.PubMedCrossRefGoogle Scholar
  69. 69.
    Demidem A, Lam T, Alas S, Hariharan K, Hanna N, Bonavida B. Chimeric anti-CD20 (IDEC-C2B8) monoclonal antibody sensitizes a B cell lymphoma cell line to cell killing by cytotoxic drugs. Cancer Biother Radiopharm. 1997;12:177–186.PubMedCrossRefGoogle Scholar
  70. 70.
    Golay J, Zaffaroni L, Vaccari T, et al. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood. 2000;95:3900–3908.PubMedGoogle Scholar
  71. 71.
    Tedder TF, Forsgren A, Boyd AW, Nadler LM, Schlossman SF. Antibodies reactive with the B1 molecule inhibit cell cycle progression but not activation of human B lymphocytes. Eur J Immunol. 1986;16:881–887.PubMedCrossRefGoogle Scholar
  72. 72.
    Maloney DG, Liles TM, Czerwinski DK, et al. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood. 1994;84:2457–2466.PubMedGoogle Scholar
  73. 73.
    Maloney DG, Grillo-Lopez AJ, White CA, et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood. 1997;90:2188–2195.PubMedGoogle Scholar
  74. 74.
    McLaughlin P, Grillo-Lopez AJ, Link BK, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16:2825–2833.PubMedGoogle Scholar
  75. 75.
    Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17:1244.PubMedGoogle Scholar
  76. 76.
    Berinstein NL, Grillo-Lopez AJ, White CA, et al. Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol. 1998;9:995–1001.PubMedCrossRefGoogle Scholar
  77. 77.
    Davis TA, Grillo-Lopez AJ, White CA, et al. Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J Clin Oncol. 2000;18:3135–3143.PubMedGoogle Scholar
  78. 78.
    Hainsworth JD, Litchy S, Burris HA, 3rd, et al. Rituximab as first-line and maintenance therapy for patients with indolent non-hodgkin’s lymphoma. J Clin Oncol. 2002;20:4261–4267.PubMedCrossRefGoogle Scholar
  79. 79.
    Witzig TE, Vukov AM, Habermann TM, et al. Rituximab therapy for patients with newly diagnosed, advanced-stage, follicular grade I non-Hodgkin’s lymphoma: a phase II trial in the North Central Cancer Treatment Group. J Clin Oncol. 2005;23:1103–1108.PubMedCrossRefGoogle Scholar
  80. 80.
    Ghielmini M, Schmitz SF, Cogliatti SB, et al. Prolonged treatment with rituximab in patients with follicular lymphoma significantly increases event-free survival and response duration compared with the standard weekly x 4 schedule. Blood. 2004;103:4416–4423.PubMedCrossRefGoogle Scholar
  81. 81.
    Czuczman MS, Grillo-Lopez AJ, White CA, et al. Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J Clin Oncol. 1999;17:268–276.PubMedGoogle Scholar
  82. 82.
    Czuczman MS, Koryzna A, Mohr A, et al. Rituximab in combination with fludarabine chemotherapy in low-grade or follicular lymphoma. J Clin Oncol. 2005;23:694–704.PubMedCrossRefGoogle Scholar
  83. 83.
    McLaughlin P, Hagemeister FB, Rodriguez MA, et al. Safety of fludarabine, mitoxantrone, and dexamethasone combined with rituximab in the treatment of stage IV indolent lymphoma. Semin Oncol. 2000;27:37–41.PubMedGoogle Scholar
  84. 84.
    Vose JM, Link BK, Grossbard ML, et al. Phase II study of rituximab in combination with chop chemotherapy in patients with previously untreated, aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2001;19:389–397.PubMedGoogle Scholar
  85. 85.
    Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235–242.PubMedCrossRefGoogle Scholar
  86. 86.
    Feugier P, Van Hoof A, Sebban C, et al. Long-Term Results of the R-CHOP Study in the Treatment of Elderly Patients With Diffuse Large B-Cell Lymphoma: A Study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 2005;23:4117–4126.PubMedCrossRefGoogle Scholar
  87. 87.
    Coiffier B, Haioun C, Ketterer N, et al. Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study. Blood. 1998;92:1927–1932.PubMedGoogle Scholar
  88. 88.
    Hainsworth JD, Litchy S, Barton JH, et al. Single-agent rituximab as first-line and maintenance treatment for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma: a phase II trial of the Minnie Pearl Cancer Research Network. J Clin Oncol. 2003;21:1746–1751.PubMedCrossRefGoogle Scholar
  89. 89.
    Schulz H, Klein SK, Rehwald U, et al. Phase 2 study of a combined immunochemotherapy using rituximab and fludarabine in patients with chronic lymphocytic leukemia. Blood. 2002;100:3115–3120.PubMedCrossRefGoogle Scholar
  90. 90.
    Byrd JC, Rai K, Peterson BL, et al. Addition of rituximab to fludarabine may prolong progression-free survival and overall survival in patients with previously untreated chronic lymphocytic leukemia: an updated retrospective comparative analysis of CALGB 9712 and CALGB 9011. Blood. 2005;105:49–53.PubMedCrossRefGoogle Scholar
  91. 91.
    Milenic DE, Brechbiel MW. Targeting of radio-isotopes for cancer therapy. Cancer Biol Ther. 2004;3:361–370.PubMedGoogle Scholar
  92. 92.
    Witzig TE. Efficacy and safety of 90Y ibritumomab tiuxetan (Zevalin) radioimmunotherapy for non-Hodgkin’s lymphoma. Semin Oncol. 2003;30:11–16.PubMedCrossRefGoogle Scholar
  93. 93.
    Wiseman GA, White CA, Stabin M, et al. Phase I/II 90Y-Zevalin (yttrium-90 ibritumomab tiuxetan, IDEC-Y2B8) radioimmunotherapy dosimetry results in relapsed or refractory non-Hodgkin’s lymphoma. Eur J Nucl Med. 2000;27:766–777.PubMedCrossRefGoogle Scholar
  94. 94.
    Witzig TE, White CA, Gordon LI, et al. Safety of yttrium-90 ibritumomab tiuxetan radioimmunotherapy for relapsed low-grade, follicular, or transformed non-hodgkin’s lymphoma. J Clin Oncol. 2003;21:1263–1270.PubMedCrossRefGoogle Scholar
  95. 95.
    Witzig TE, White CA, Wiseman GA, et al. Phase I/II trial of IDEC-Y2B8 radioimmunotherapy for treatment of relapsed or refractory CD20(+) B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 1999;17:3793–3803.PubMedGoogle Scholar
  96. 96.
    Gordon LI, Molina A, Witzig T, et al. Durable responses after ibritumomab tiuxetan radioimmunotherapy for CD20+ B-cell lymphoma: long-term follow-up of a phase 1/2 study. Blood. 2004;103:4429–4431.PubMedCrossRefGoogle Scholar
  97. 97.
    Witzig TE, Flinn IW, Gordon LI, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:3262–3269.PubMedCrossRefGoogle Scholar
  98. 98.
    Witzig TE, Gordon LI, Cabanillas F, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:2453–2463.PubMedCrossRefGoogle Scholar
  99. 99.
    Kaminski MS, Estes J, Zasadny KR, et al. Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood. 2000;96:1259–1266.PubMedGoogle Scholar
  100. 100.
    Vose JM, Wahl RL, Saleh M, et al. Multicenter phase II study of iodine-131 tositumomab for chemotherapy-relapsed/refractory low-grade and transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol. 2000;18:1316–1323.PubMedGoogle Scholar
  101. 101.
    Kaminski MS, Tuck M, Estes J, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med. 2005;352:441–449.PubMedCrossRefGoogle Scholar
  102. 102.
    Horning SJ, Younes A, Jain V, et al. Efficacy and safety of tositumomab and iodine-131 tositumomab (Bexxar) in B-cell lymphoma, progressive after rituximab. J Clin Oncol. 2005;23:712–719.PubMedCrossRefGoogle Scholar
  103. 103.
    Gopal AK, Gooley TA, Maloney DG, et al. High-dose radioimmunotherapy versus conventional high-dose therapy and autologous hematopoietic stem cell transplantation for relapsed follicular non-Hodgkin lymphoma: a multivariable cohort analysis. Blood. 2003;102:2351–2357.PubMedCrossRefGoogle Scholar
  104. 104.
    Wellhausen SR, Peiper SC. CD33: biochemical and biological characterization and evaluation of clinical relevance. J Biol Regul Homeost Agents. 2002;16:139–143.PubMedGoogle Scholar
  105. 105.
    Giles FJ. Gemtuzumab ozogamicin: promise and challenge in patients with acute myeloid leukemia. Expert Rev Anticancer Ther. 2002;2:630–640.PubMedCrossRefGoogle Scholar
  106. 106.
    van Der Velden VH, te Marvelde JG, Hoogeveen PG, et al. Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood. 2001;97:3197–3204.CrossRefGoogle Scholar
  107. 107.
    Amico D, Barbui AM, Erba E, Rambaldi A, Introna M, Golay J. Differential response of human acute myeloid leukemia cells to gemtuzumab ozogamicin in vitro: role of Chk1 and Chk2 phosphorylation and caspase 3. Blood. 2003;101:4589–4597.PubMedCrossRefGoogle Scholar
  108. 108.
    Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19:3244–3254.PubMedGoogle Scholar
  109. 109.
    Wadleigh M, Richardson PG, Zahrieh D, et al. Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood. 2003;102:1578–1582.PubMedCrossRefGoogle Scholar
  110. 110.
    Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7:1490–1496.PubMedGoogle Scholar
  111. 111.
    Alvarado Y, Tsimberidou A, Kantarjian H, et al. Pilot study of Mylotarg, idarubicin and cytarabine combination regimen in patients with primary resistant or relapsed acute myeloid leukemia. Cancer Chemother Pharmacol. 2003;51:87–90.PubMedCrossRefGoogle Scholar
  112. 112.
    Cortes J, Tsimberidou AM, Alvarez R, et al. Mylotarg combined with topotecan and cytarabine in patients with refractory acute myelogenous leukemia. Cancer Chemother Pharmacol. 2002;50:497–500.PubMedCrossRefGoogle Scholar
  113. 113.
    Estey EH, Giles FJ, Beran M, et al. Experience with gemtuzumab ozogamycin (“mylotarg”) and all-trans retinoic acid in untreated acute promyelocytic leukemia. Blood. 2002;99:4222–4224.PubMedCrossRefGoogle Scholar
  114. 114.
    Dyer MJ, Hale G, Hayhoe FG, Waldmann H. Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood. 1989;73:1431–1439.PubMedGoogle Scholar
  115. 115.
    Rowan W, Tite J, Topley P, Brett SJ. Cross-linking of the CAMPATH-1 antigen (CD52) mediates growth inhibition in human B- and T-lymphoma cell lines, and subsequent emergence of CD52-deficient cells. Immunology. 1998;95:427–436.PubMedCrossRefGoogle Scholar
  116. 116.
    Lundin J, Osterborg A, Brittinger G, et al. CAMPATH-1H monoclonal antibody in therapy for previously treated low-grade non-Hodgkin’s lymphomas: a phase II multicenter study. European Study Group of CAMPATH-1H Treatment in Low-Grade Non-Hodgkin’s Lymphoma. J Clin Oncol. 1998;16:3257–3263.PubMedGoogle Scholar
  117. 117.
    Nguyen DD, Cao TM, Dugan K, Starcher SA, Fechter RL, Coutre SE. Cytomegalovirus viremia during Campath-1H therapy for relapsed and refractory chronic lymphocytic leukemia and prolymphocytic leukemia. Clin Lymphoma. 2002;3:105–110.PubMedGoogle Scholar
  118. 118.
    Rai KR, Freter CE, Mercier RJ, et al. Alemtuzumab in previously treated chronic lymphocytic leukemia patients who also had received fludarabine. J Clin Oncol. 2002;20:3891–3897.PubMedCrossRefGoogle Scholar
  119. 119.
    Keating MJ, Flinn I, Jain V, et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood. 2002;99:3554–3561.PubMedCrossRefGoogle Scholar
  120. 120.
    Osterborg A, Fassas AS, Anagnostopoulos A, Dyer MJ, Catovsky D, Mellstedt H. Humanized CD52 monoclonal antibody Campath-1H as first-line treatment in chronic lymphocytic leukaemia. Br J Haematol. 1996;93:151–153.PubMedCrossRefGoogle Scholar
  121. 121.
    Keating MJ, Cazin B, Coutre S, et al. Campath-1H treatment of T-cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed. J Clin Oncol. 2002;20:205–213.PubMedCrossRefGoogle Scholar
  122. 122.
    Uppenkamp M, Engert A, Diehl V, Bunjes D, Huhn D, Brittinger G. Monoclonal antibody therapy with CAMPATH-1H in patients with relapsed high- and low-grade non-Hodgkin’s lymphomas: a multicenter phase I/II study. Ann Hematol. 2002;81:26–32.PubMedCrossRefGoogle Scholar
  123. 123.
    Faderl S, Thomas DA, O’Brien S, et al. Experience with alemtuzumab plus rituximab in patients with relapsed and refractory lymphoid malignancies. Blood. 2003;101:3413–3415.PubMedCrossRefGoogle Scholar
  124. 124.
    Kennedy B, Rawstron A, Carter C, et al. Campath-1H and fludarabine in combination are highly active in refractory chronic lymphocytic leukemia. Blood. 2002;99:2245–2247.PubMedCrossRefGoogle Scholar
  125. 125.
    Kottaridis PD, Milligan DW, Chopra R, et al. In vivo CAMPATH-1H prevents graft-versus-host disease following nonmyeloablative stem cell transplantation. Blood. 2000;96:2419–2425.PubMedGoogle Scholar
  126. 126.
    Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707–712.PubMedCrossRefGoogle Scholar
  127. 127.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–182.PubMedCrossRefGoogle Scholar
  128. 128.
    McKenzie SJ, Marks PJ, Lam T, et al. Generation and characterization of monoclonal antibodies specific for the human neu oncogene product, p185. Oncogene. 1989;4:543–548.PubMedGoogle Scholar
  129. 129.
    Hancock MC, Langton BC, Chan T, et al. A monoclonal antibody against the c-erbB-2 protein enhances the cytotoxicity of cis-diamminedichloroplatinum against human breast and ovarian tumor cell lines. Cancer Res. 1991;51:4575–4580.PubMedGoogle Scholar
  130. 130.
    Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20:719–726.PubMedCrossRefGoogle Scholar
  131. 131.
    Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17:2639–2648.PubMedGoogle Scholar
  132. 132.
    Pietras RJ, Fendly BM, Chazin VR, Pegram MD, Howell SB, Slamon DJ. Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. Oncogene. 1994;9:1829–1838.PubMedGoogle Scholar
  133. 133.
    Pegram MD, Lipton A, Hayes DF, et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol. 1998;16:2659–2671.PubMedGoogle Scholar
  134. 134.
    Seidman AD, Fornier MN, Esteva FJ, et al. Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. J Clin Oncol. 2001;19:2587–2595.PubMedGoogle Scholar
  135. 135.
    Esteva FJ, Valero V, Booser D, et al. Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20:1800–1808.PubMedCrossRefGoogle Scholar
  136. 136.
    Burstein HJ, Kuter I, Campos SM, et al. Clinical activity of trastuzumab and vinorelbine in women with HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2001;19:2722–2730.PubMedGoogle Scholar
  137. 137.
    Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–792.PubMedCrossRefGoogle Scholar
  138. 138.
    Baselga J, Gianni L, Geyer C, Perez EA, Riva A, Jackisch C. Future options with trastuzumab for primary systemic and adjuvant therapy. Semin Oncol. 2004;31:51–57.PubMedCrossRefGoogle Scholar
  139. 139.
    Lee JC, Chow NH, Wang ST, Huang SM. Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients. Eur J Cancer. 2000;36:748–753.PubMedCrossRefGoogle Scholar
  140. 140.
    Kabbinavar F, Hurwitz HI, Fehrenbacher L, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol. 2003;21:60–65.PubMedCrossRefGoogle Scholar
  141. 141.
    Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–2342.PubMedCrossRefGoogle Scholar
  142. 142.
    Hurwitz HI, Fehrenbacher L, Hainsworth JD, et al. Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol. 2005;23:3502–3508.PubMedCrossRefGoogle Scholar
  143. 143.
    Giantonio BJ PC, NJ Meropol, PJ O’Dwyer, EP Mitchell, SR Alberts, MA Schwartz, AB Benson. High-dose bevacizumab improves survival when combined with FOLFOX4 in previously treated advanced colorectal cancer: Results from the Eastern Cooperative Oncology Group (ECOG) study E3200. Proc Am Soc Clin Oncol Abstract #2; 2005.Google Scholar
  144. 144.
    Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 2004;22:2184–2191.PubMedCrossRefGoogle Scholar
  145. 145.
    Sandler AB RG, J Brahmer, A Dowlati, JH Schiller, MC Perry, DH Johnson. Randomized phase II/III Trial of paclitaxel (P) plus carboplatin (C) with or without bevacizumab (NSC # 704865) in patients with advanced non-squamous non-small cell lung cancer (NSCLC): An Eastern Cooperative Oncology Group (ECOG) Trial - E4599. Proc Am Soc Clin Onc (Abstract No: LBA4); 2005.Google Scholar
  146. 146.
    Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349:427–434.PubMedCrossRefGoogle Scholar
  147. 147.
    Ciardiello F, Tortora G. Anti-epidermal growth factor receptor drugs in cancer therapy. Expert Opin Investig Drugs. 2002;11:755–768.PubMedCrossRefGoogle Scholar
  148. 148.
    Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer. 2001;37 Suppl 4:S9–15.PubMedCrossRefGoogle Scholar
  149. 149.
    Ciardiello F, Bianco R, Damiano V, et al. Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clin Cancer Res. 1999;5:909–916.PubMedGoogle Scholar
  150. 150.
    Robert F, Ezekiel MP, Spencer SA, et al. Phase I study of anti–epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol. 2001;19:3234–3243.PubMedGoogle Scholar
  151. 151.
    Saltz LB, Meropol NJ, Loehrer PJ, Sr., Needle MN, Kopit J, Mayer RJ. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol. 2004;22:1201–1208.PubMedCrossRefGoogle Scholar
  152. 152.
    Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351:337–345.PubMedCrossRefGoogle Scholar
  153. 153.
    Díaz Rubio E JT, E van Cutsem, A Cervantes, T André, Y Humblet, P Soulié, S Corretgé, O Kisker, A de Gramont. Cetuximab in combination with oxaliplatin/5-fluorouracil (5-FU)/folinic acid (FA) (FOLFOX-4) in the first-line treatment of patients with epidermal growth factor receptor (EGFR)-expressing metastatic colorectal cancer: An international phase II study. Am Soc Clin Oncol (Abstract No: 3535); 2005.Google Scholar
  154. 154.
    Motzer RJ, Amato R, Todd M, et al. Phase II trial of antiepidermal growth factor receptor antibody C225 in patients with advanced renal cell carcinoma. Invest New Drugs. 2003;21:99–101.PubMedCrossRefGoogle Scholar
  155. 155.
    Xiong HQ, Rosenberg A, LoBuglio A, et al. Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: a multicenter phase II Trial. J Clin Oncol. 2004;22:2610–2616.PubMedCrossRefGoogle Scholar
  156. 156.
    Adkins JC, Spencer CM. Edrecolomab (monoclonal antibody 17–1A). Drugs. 1998;56:619–626; discussion 627–618.PubMedCrossRefGoogle Scholar
  157. 157.
    Riethmuller G, Holz E, Schlimok G, et al. Monoclonal antibody therapy for resected Dukes’ C colorectal cancer: seven-year outcome of a multicenter randomized trial. J Clin Oncol. 1998;16:1788–1794.PubMedGoogle Scholar
  158. 158.
    Punt CJ, Nagy A, Douillard JY, et al. Edrecolomab alone or in combination with fluorouracil and folinic acid in the adjuvant treatment of stage III colon cancer: a randomised study. Lancet. 2002;360:671–677.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Christoph Rader
    • 1
  • Michael R. Bishop
    • 1
  1. 1.Experimental Transplantation and Immunology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations