General Approaches to Measuring Immune Responses

  • Mary L. Disis
  • Keith L. Knutson


ELISPOT Assay Immunol Method Precursor Frequency Chromium Release Assay Cytokine Flow Cytometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tanguay S, Killion JJ (1994) Direct comparison of ELISPOT and ELISA-based assays for detection of individual cytokine-secreting cells. Lymphokine Cytokine Res 13(4):259–63PubMedGoogle Scholar
  2. 2.
    Schmittel A, et al. (2000) Quantification of tumor-specific T lymphocytes with the ELISPOT assay. J Immunother 23(3):289–95PubMedCrossRefGoogle Scholar
  3. 3.
    Miyahira Y, et al. (1995) Quantification of antigen specific CD8+ T cells using an ELISPOT assay. J Immunol Methods 181(1):45–54PubMedCrossRefGoogle Scholar
  4. 4.
    Smith JG, et al. (2001) Development and validation of a gamma interferon elispot assay for quantitation of cellular immune responses to varicella-zoster virus. Clin Diagn Lab Immunol 8(5):871–9PubMedCrossRefGoogle Scholar
  5. 5.
    McCutcheon M, et al. (1997) A sensitive ELISPOT assay to detect low-frequency human T lymphocytes. J Immunol Methods 210(2):149–66PubMedCrossRefGoogle Scholar
  6. 6.
    Knutson KL, et al. (2001) Immunization with a HER-2/neu helper peptide vaccine generates HER- 2/neu CD8 T-cell immunity in cancer patients. J Clin Invest 107(4):477–84PubMedCrossRefGoogle Scholar
  7. 7.
    Lathey J (2003) Preliminary steps toward validating a clinical bioassay. BioPharm Int 18:42–50Google Scholar
  8. 8.
    Jennes W, et al. (2002) Enhanced ELISPOT detection of antigen-specific T cell responses from cryopreserved specimens with addition of both IL-7 and IL-15–the Amplispot assay. J Immunol Methods 270(1):99–108PubMedGoogle Scholar
  9. 9.
    Enk AH, et al. (1999) Decreased rate of progression and induction of tumor-specific immune response by adjuvant immunotherapy in stage IV melanoma. Hautarzt 50(2):103–8PubMedCrossRefGoogle Scholar
  10. 10.
    Reynolds SR, et al. (1997) Stimulation of CD8+ T cell responses to MAGE-3 and Melan A/MART-1 by immunization to a polyvalent melanoma vaccine. Int J Cancer 72(6):972–6PubMedCrossRefGoogle Scholar
  11. 11.
    Nomura LE, et al. (2000) Optimization of whole blood antigen-specific cytokine assays for CD4(+) T cells. Cytometry 40(1):60–8PubMedCrossRefGoogle Scholar
  12. 12.
    McHugh S, et al. (1996) Kinetics and functional implications of Th1 and Th2 cytokine production following activation of peripheral blood mononuclear cells in primary culture. Eur J Immunol 26(6):1260–5PubMedCrossRefGoogle Scholar
  13. 13.
    Seder RA, Ahmed R (2003) Similarities and differences in CD4(+) and CD8(+) effector and memory T cell generation. Nat Immunol 4(9):835–42PubMedCrossRefGoogle Scholar
  14. 14.
    De Rosa SC, et al. (2001) 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat Med 7(2):245–8PubMedCrossRefGoogle Scholar
  15. 15.
    Pittet MJ, et al. (2001a) Expansion and functional maturation of human tumor antigen-specific CD8+ T cells after vaccination with antigenic peptide. Clin Cancer Res 7(3 Suppl):796s–803sGoogle Scholar
  16. 16.
    Pittet MJ, et al. (2001b) Ex vivo analysis of tumor antigen specific CD8+ T cell responses using MHC/peptide tetramers in cancer patients. Int Immunopharmacol 1(7):1235–47CrossRefGoogle Scholar
  17. 17.
    Kwok WW, et al. (2002) Use of class II tetramers for identification of CD4+ T cells. J Immunol Methods 268(1):71–81PubMedCrossRefGoogle Scholar
  18. 18.
    Dunbar PR, et al. (1998) Direct isolation, phenotyping and cloning of low-frequency antigen-specific cytotoxic T lymphocytes from peripheral blood. Curr Biol 8(7):413–6PubMedCrossRefGoogle Scholar
  19. 19.
    He XS, et al. (1999) Quantitative analysis of hepatitis C virus-specific CD8(+) T cells in peripheral blood and liver using peptide-MHC tetramers. Proc Natl Acad Sci U S A 96(10):5692–7PubMedCrossRefGoogle Scholar
  20. 20.
    Tan LC, et al. (1999) A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers. J Immunol 162(3):1827–35PubMedGoogle Scholar
  21. 21.
    Xiong Y, et al. (2001) Simian immunodeficiency virus (SIV) infection of a rhesus macaque induces SIV-specific CD8(+) T cells with a defect in effector function that is reversible on extended interleukin-2 incubation. J Virol 75(6):3028–33PubMedCrossRefGoogle Scholar
  22. 22.
    Engstrand M, et al. (2003) Cellular responses to cytomegalovirus in immunosuppressed patients: circulating CD8+ T cells recognizing CMVpp65 are present but display functional impairment. Clin Exp Immunol 132(1):96–104PubMedCrossRefGoogle Scholar
  23. 23.
    Jager E, et al. (2002) Peptide-specific CD8+ T-cell evolution in vivo: response to peptide vaccination with Melan-A/MART-1. Int J Cancer 98(3):376–88PubMedCrossRefGoogle Scholar
  24. 24.
    Lau R, et al. (2001) Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J Immunother 24(1):66–78PubMedCrossRefGoogle Scholar
  25. 25.
    Lee KH, et al. (1999) Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J Immunol 163(11):6292–300PubMedGoogle Scholar
  26. 26.
    Lee P, et al. (2001) Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J Clin Oncol 19(18):3836–47PubMedGoogle Scholar
  27. 27.
    Nielsen MB, Marincola FM (2000) Melanoma vaccines: the paradox of T cell activation without clinical response. Cancer Chemother Pharmacol 46 Suppl:S62–6PubMedCrossRefGoogle Scholar
  28. 28.
    Oertli D, et al. (2002) Rapid induction of specific cytotoxic T lymphocytes against melanoma-associated antigens by a recombinant vaccinia virus vector expressing multiple immunodominant epitopes and costimulatory molecules in vivo. Hum Gene Ther 13(4):569–75PubMedCrossRefGoogle Scholar
  29. 29.
    Maecker HT, et al. (2005) Impact of cryopreservation on tetramer, cytokine flow cytometry, and ELISPOT. BMC Immunol 6(1):17PubMedCrossRefGoogle Scholar
  30. 30.
    Ellis RW (1999a) Immunological Correlates for Efficacy of Combination Vaccines. In: Ellis RW (ed) Combination Vaccines: Development, Clinical Research, and Approval. Humana Press, Totowa, pp 107–131Google Scholar
  31. 31.
    Ellis RW (1999b) Development of combination vaccines. Vaccine 17(13–14):1635–42CrossRefGoogle Scholar
  32. 32.
    Volk V, et al. (1962) Antigenic responses to booster dose of diptheria and tetanus toxoids: Seven to thirteen years after primary inoculation of noninstitutionalized children. Public Health Rep 77:185PubMedGoogle Scholar
  33. 33.
    Van Hattum J, et al. (1991) In vitro anti-HBs production by indiviual B cells of responders to hepatitis B vaccine who subsequently lost antibody. In: Hollinger F, Lemon S, Margolis H (eds) Viral Hepatitis and Liver Disease. Williams and Wilkins, Baltimore, pp 774Google Scholar
  34. 34.
    Hsueh EC, et al. (1998) Correlation of specific immune responses with survival in melanoma patients with distant metastases receiving polyvalent melanoma cell vaccine. J Clin Oncol 16(9):2913–20PubMedGoogle Scholar
  35. 35.
    Quan WD, Jr., et al. (1997) Active specific immunotherapy of metastatic melanoma with an antiidiotype vaccine: a phase I/II trial of I-Mel-2 plus SAF-m. J Clin Oncol 15(5):2103–10PubMedGoogle Scholar
  36. 36.
    Finkelman FD, et al. (1990) Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol 8:303–33PubMedCrossRefGoogle Scholar
  37. 37.
    Coffman RL, et al. (1986) B cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide-activated B cells. J Immunol 136(12):4538–41PubMedGoogle Scholar
  38. 38.
    Milich DR, et al. (1997) The hepatitis B virus core and e antigens elicit different Th cell subsets: antigen structure can affect Th cell phenotype. J Virol 71(3):2192–201PubMedGoogle Scholar
  39. 39.
    Brewer JM, et al. (1998) Lipid vesicle size determines the Th1 or Th2 response to entrapped antigen. J Immunol 161(8):4000–7PubMedGoogle Scholar
  40. 40.
    Panelli MC, et al. (2002) The role of quantitative PCR for the immune monitoring of cancer patients. Expert Opin Biol Ther 2(5):557–64PubMedCrossRefGoogle Scholar
  41. 41.
    Hempel DM, et al. (2002) Analysis of cellular immune responses in the peripheral blood of mice using real-time RT-PCR. J Immunol Methods 259(1–2):129–38PubMedCrossRefGoogle Scholar
  42. 42.
    de Jager W, et al. (2003) Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells. Clin Diagn Lab Immunol 10(1):133–9PubMedCrossRefGoogle Scholar
  43. 43.
    Lyons AB (2000) Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 243(1–2):147–54PubMedCrossRefGoogle Scholar
  44. 44.
    Dutton RW, et al. (1998) T cell memory. Annu Rev Immunol 16:201–23PubMedCrossRefGoogle Scholar
  45. 45.
    Zinkernagel RM, et al. (1996) On immunological memory. Annu Rev Immunol 14:333–67PubMedCrossRefGoogle Scholar
  46. 46.
    Snyder JE, et al. (2003) Measuring the frequency of mouse and human cytotoxic T cells by the Lysispot assay: independent regulation of cytokine secretion and short-term killing. Nat Med 9(2):231–5PubMedCrossRefGoogle Scholar
  47. 47.
    Rininsland FH, et al. (2000) Granzyme B ELISPOT assay for ex vivo measurements of T cell immunity. J Immunol Methods 240(1–2):143–55PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Mary L. Disis
    • 1
  • Keith L. Knutson
    • 2
  1. 1.Center for Translational Medicine in Women’s HealthTumor Vaccine Group, University of WashingtonSeattle
  2. 2.Department of ImmunologyMayo ClinicRochesterUSA

Personalised recommendations